Steiner Convex Sets and Cartesian Product

被引:10
作者
Gologranc, Tanja [1 ]
机构
[1] Univ Maribor, Fac Nat Sci & Math, Maribor, Slovenia
关键词
Steiner convexity; Cartesian product; Grid; GRAPHS; INTERVALS; DISTANCE; TREES;
D O I
10.1007/s40840-016-0312-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we prove some bounds for Steiner distance in Cartesian product. We investigate properties of connected subgraphs that are not Steiner convex. Those results are the key in the characterization of Steiner convex sets of grids and also in the characterization of 3-Steiner convex sets of Cartesian product graphs.
引用
收藏
页码:627 / 636
页数:10
相关论文
共 21 条
[1]   Toll convexity [J].
Alcon, Liliana ;
Bresar, Bastjan ;
Gologranc, Tanja ;
Gutierrez, Marisa ;
Sumenjak, Tadeja Kraner ;
Peterin, Iztok ;
Tepeh, Aleksandra .
EUROPEAN JOURNAL OF COMBINATORICS, 2015, 46 :161-175
[2]   Convex Sets in Lexicographic Products of Graphs [J].
Anand, Bijo S. ;
Changat, Manoj ;
Klavzar, Sandi ;
Peterin, Iztok .
GRAPHS AND COMBINATORICS, 2012, 28 (01) :77-84
[3]  
Bandelt HJ, 2008, CONTEMP MATH, V453, P49
[4]   On a local 3-Steiner convexity [J].
Bresar, Bostjan ;
Gologranc, Tanja .
EUROPEAN JOURNAL OF COMBINATORICS, 2011, 32 (08) :1222-1235
[5]   Steiner intervals, geodesic intervals, and betweenness [J].
Bresar, Bostjan ;
Changat, Manoj ;
Mathews, Joseph ;
Peterin, Iztok ;
Narasimha-Shenoi, Prasanth G. ;
Horvat, Aleksandra Tepeh .
DISCRETE MATHEMATICS, 2009, 309 (20) :6114-6125
[6]   Steiner distance and convexity in graphs [J].
Caceres, J. ;
Marquez, A. ;
Puertas, M. L. .
EUROPEAN JOURNAL OF COMBINATORICS, 2008, 29 (03) :726-736
[7]   On 3-Steiner simplicial orderings [J].
Caceres, Jose ;
Oellermann, Ortrud R. .
DISCRETE MATHEMATICS, 2009, 309 (19) :5828-5833
[8]   Convex Sets Under Some Graph Operations [J].
Sergio R. Canoy, Jr. ;
I.J.L. Garces .
Graphs and Combinatorics, 2002, 18 (4) :787-793
[9]   Convexities related to path properties on graphs [J].
Changat, M ;
Mulder, HM ;
Sierksma, G .
DISCRETE MATHEMATICS, 2005, 290 (2-3) :117-131
[10]   STEINER MINIMAL TREES [J].
GILBERT, EN ;
POLLAK, HO .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1968, 16 (01) :1-&