Lithium-Ion Battery Systems

被引:126
作者
Horiba, Tatsuo [1 ]
机构
[1] Mie Univ, Grad Sch Engn, Tsu, Mie 5148507, Japan
关键词
Battery; cell chemistry; energy density; energy storage; life; lithium-iron phosphate; lithium manganite; lithium titanate; lithium ion; specific energy; ANODE; MN; PERFORMANCE; INSERTION; BEHAVIOR; CATHODE; CO;
D O I
10.1109/JPROC.2014.2319832
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The production of lithium-ion (Li-ion) batteries has been continually increasing since their first introduction into the market in 1991 because of their excellent performance, which is related to their high specific energy, energy density, specific power, efficiency, and long life. Li-ion batteries were first used for consumer electronics products such as mobile phones, camcorders, and laptop computers, followed by automotive applications that emerged during the last decade and are still expanding, and finally industrial applications including energy storage. There are four promising cell chemistries considered for energy storage applications: 1) LiMn2O4/graphite cell chemistry uses low-cost materials that are naturally abundant; 2) LiNi1-X-Y2CoXAlYO2/graphite cell chemistry has high specific energy and long life; 3) LiFePO4/graphite (or carbon) cell chemistry has good safety characteristics; and 4) Li4Ti5O12 is used as the negative electrode material in Li-ion batteries with long life and good safety features. However, each of the cell chemistries has some disadvantages, and the development of these technologies is still in progress. Therefore, it is too early to predict which cell chemistry will be the main candidate for energy storage applications, and we have to remain vigilant with respect to trends in technological progress and also consider changes in economic and social conditions before this can be determined.
引用
收藏
页码:939 / 950
页数:12
相关论文
共 63 条
[1]  
Aldrich C., 2011, ADV AUT BATT C LLIBT
[2]   Electrochemical and thermal behavior of LiNi1-zMzO2 (M = Co, Mn, Ti) [J].
Arai, H ;
Okada, S ;
Sakurai, Y ;
Yamaki, J .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1997, 144 (09) :3117-3125
[3]  
Arai H., 1993, P ABSTR 34 BATT S HI, P49
[4]  
Brodd R.J., 2009, Lithium -Ion Batteries, P1, DOI [DOI 10.1007/978-0-387-34445-4, DOI 10.1007/978-0-387-34445-4_1, 10.1007/978-0-387-34445-4_1]
[5]  
Brodd RJ, 2002, ADVANCES IN LITHIUM-ION BATTERIES, P267, DOI 10.1007/0-306-47508-1_10
[6]   Properties of large Li ion cells using a nickel based mixed oxide [J].
Broussely, A ;
Blanchard, P ;
Biensan, P ;
Planchat, JP ;
Nechev, K ;
Staniewicz, RJ .
JOURNAL OF POWER SOURCES, 2003, 119 :859-864
[7]   LI/LIXNIO2 AND LI/LIXCOO2 RECHARGEABLE SYSTEMS - COMPARATIVE-STUDY AND PERFORMANCE OF PRACTICAL CELLS [J].
BROUSSELY, M ;
PERTON, F ;
LABAT, J ;
STANIEWICZ, RJ ;
ROMERO, A .
JOURNAL OF POWER SOURCES, 1993, 43 (1-3) :209-216
[8]   STRUCTURE AND ELECTROCHEMISTRY OF THE SPINEL OXIDES LITI2O4 AND LI4/3TI5/3O4 [J].
COLBOW, KM ;
DAHN, JR ;
HAERING, RR .
JOURNAL OF POWER SOURCES, 1989, 26 (3-4) :397-402
[9]   ELECTROCHEMICAL AND PHYSICAL-PROPERTIES OF THE LIXNI1-YCOYO2 PHASES [J].
DELMAS, C ;
SAADOUNE, I .
SOLID STATE IONICS, 1992, 53 (pt 1) :370-375
[10]   On the behavior of the LixNiO2 system:: an electrochemical and structural overview [J].
Delmas, C ;
Peres, JP ;
Rougier, A ;
Demourgues, A ;
Weill, F ;
Chadwick, A ;
Broussely, M ;
Perton, F ;
Biensan, P ;
Willmann, P .
JOURNAL OF POWER SOURCES, 1997, 68 (01) :120-125