Trajectory tracking control for micro unmanned aerial vehicles

被引:1
|
作者
Zhai Ruiyong [1 ]
Zhang Wendong [1 ]
Zhou Zhaoying [2 ]
Sang Shengbo [1 ]
Li Pengwei [1 ]
机构
[1] Taiyuan Univ Technol, MicroNano Syst Res Ctr, Taiyuan, Peoples R China
[2] Tsinghua Univ, Dept Precis Instruments & Mechanol, Beijing, Peoples R China
来源
ADVANCES IN APPLIED SCIENCE AND INDUSTRIAL TECHNOLOGY, PTS 1 AND 2 | 2013年 / 798-799卷
关键词
Unmanned air vehicle (UAV); Lateral control; Longitudinal control; Micro-electro mechanical system (MEMS);
D O I
10.4028/www.scientific.net/AMR.798-799.448
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This article considers the problem of trajectory tracking control for a micro fixed-wing unmanned air vehicle (UAV). With Bank-to-Turn (BTT) method to manage lateral deviation control of UAV, this paper discusses the outer loop guidance system, which separates the vehicle guidance problems into lateral control loop and longitudinal control loop. Based on the kinematic model of the coordinated turning of UAV, the aircraft can track a pre-specified flight path with desired error range. Flight test results on a fixed-wing UAV have indicated that the trajectory tracking control law is quite effective.
引用
收藏
页码:448 / +
页数:2
相关论文
共 50 条
  • [1] Optimal tracking control of flight trajectory for unmanned aerial vehicles
    Khan, Md Shehzad
    Su, Hao
    Tang, Gong-You
    2018 IEEE 27TH INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS (ISIE), 2018, : 264 - 269
  • [2] Trajectory tracking control of unmanned aerial vehicles based on cascaded LADRC design
    Wang B.
    Tang C.
    Yao Z.
    Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics, 2019, 41 (06): : 1358 - 1365
  • [3] A Trajectory Tracking Control Design for Fixed-wing Unmanned Aerial Vehicles
    Low, Chang Boon
    2010 IEEE INTERNATIONAL CONFERENCE ON CONTROL APPLICATIONS, 2010, : 2118 - 2123
  • [4] Comparison of Control Methods for Trajectory Tracking in Fully Actuated Unmanned Aerial Vehicles
    Invernizzi, Davide
    Giurato, Mattia
    Gattazzo, Paolo
    Lovera, Marco
    IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2021, 29 (03) : 1147 - 1160
  • [5] TRAJECTORY TRACKING CONTROL FOR UNMANNED AERIAL VEHICLE
    Zaidi, Jamshaid
    Butt, Hamza
    Nadeem, Zobia
    Waseem, Hasher
    Yousuf, Bilal M.
    Mohsin, Haris
    2018 3RD INTERNATIONAL CONFERENCE ON EMERGING TRENDS IN ENGINEERING, SCIENCES AND TECHNOLOGY (ICEEST), 2018,
  • [6] Evolving Intelligent System for Trajectory Tracking of Unmanned Aerial Vehicles
    Singh, Rupam
    Bhushan, Bharat
    IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2022, 19 (03) : 1971 - 1984
  • [7] Trajectory-Tracking Control Law Design for Unmanned Aerial Vehicles with an Autopilot in the Loop
    Sun, Liang
    Beard, Randal W.
    Pack, Daniel
    2014 AMERICAN CONTROL CONFERENCE (ACC), 2014, : 1390 - 1395
  • [8] Quaternion-based adaptive control for trajectory tracking of quadrotor unmanned aerial vehicles
    Pliego-Jimenez, Javier
    INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2021, 35 (05) : 628 - 641
  • [9] Modeling and Trajectory Tracking Control for Flapping-Wing Micro Aerial Vehicles
    Wei He
    Xinxing Mu
    Liang Zhang
    Yao Zou
    IEEE/CAAJournalofAutomaticaSinica, 2021, 8 (01) : 148 - 156
  • [10] Modeling and trajectory tracking control for flapping-wing micro aerial vehicles
    He, Wei
    Mu, Xinxing
    Zhang, Liang
    Zou, Yao
    IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2021, 8 (01) : 148 - 156