Ordered carbohydrate-derived porous carbons immobilized gold nanoparticles as a new electrode material for electrocatalytical oxidation and determination of nicotinamide adenine dinucleotide

被引:81
作者
Hosseini, Hadi [1 ]
Behbahani, Mohammad [1 ]
Mahyari, Mojtaba [1 ]
Kazerooni, Hanif [2 ]
Bagheri, Akbar [1 ]
Shaabani, Ahmad [1 ]
机构
[1] Shahid Beheshti Univ, Dept Chem, Tehran, Iran
[2] Amirkabir Univ Technol, Tehran Polytech, Fac Chem Engn, Tehran, Iran
关键词
Mesoporous carbon materials; Ordered carbohydrate-derived porous carbons; Gold nanoparticles; Electrochemical biosensor; Nicotinamide adenine dinucleotide; ELECTROCHEMICAL OXIDATION; CATALYTIC-OXIDATION; PASTE ELECTRODE; NADH; FUNCTIONALIZATION; DEHYDROGENASE;
D O I
10.1016/j.bios.2014.02.046
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
The ordered carbohydrate-derived porous carbons (OC-DPCs) were first functionalized with thiol groups (-SH) and then immobilized with gold nanoparticles (AuNPs). The Au-SH-OC-DPCs were characterized by CHN analysis, transmission electron microscopy (TEM), fourier transform infrared spectroscopy (FT-IR). X-ray photoelectron spectroscopy (XPS), and x-ray diffraction (XRD). The Au-SH-OC-DPC5 were applied for the fabrication of a new electrochemical sensor. The electrocatalytic capabilities of the new sensor were tested by the oxidation of nicotinamide adenine dinucleotide (NADH) in a 0.1 M Robinson buffer solution (pH 7.0) using cyclic voltammetry (CV), linear sweep voltammetry (LSV), and differential pulse voltammetry (DPV). The Au-SH-OC-DPC5 showed a good voltammetric performance in the electrochemical detection of NADH with a low detection limit (1.0 nM), high sensitivity (4.934 mu A/mu M), and wide linear concentration range (5.0 nM-10 mu M). (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:412 / 417
页数:6
相关论文
共 45 条
[1]  
[Anonymous], 2001, ELECTROCHEMICAL METH
[2]   Electrochemistry at nanoporous interfaces: new opportunity for electrocatalysis [J].
Bae, Je Hyun ;
Han, Ji-Hyung ;
Chung, Taek Dong .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2012, 14 (02) :448-463
[3]   Electrochemical sensors [J].
Bakker, E ;
Telting-Diaz, M .
ANALYTICAL CHEMISTRY, 2002, 74 (12) :2781-2800
[4]   ENZYMATIC AMPLIFICATION FOR SPECTROPHOTOMETRIC AND ELECTROCHEMICAL ASSAYS OF NAD+ AND NADH [J].
BERGEL, A ;
SOUPPE, J ;
COMTAT, M .
ANALYTICAL BIOCHEMISTRY, 1989, 179 (02) :382-388
[5]   Cyclic voltammetry responses of metastable gold electrodes in aqueous media [J].
Burke, LD ;
Moran, JM ;
Nugent, PF .
JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2003, 7 (09) :529-538
[6]   Catalytic oxidation and determination of β-NADH using self-assembly hybrid of gold nanoparticles and graphene [J].
Chang, Hucheng ;
Wu, Xiaojing ;
Wu, Changyu ;
Chen, Yu ;
Jiang, Hui ;
Wang, Xuemei .
ANALYST, 2011, 136 (13) :2735-2740
[7]   Amperometric determination of NADH with Co3O4 nanosheet modified electrode [J].
Chen, Chi-Hao ;
Chen, Ying-Cih ;
Lin, Meng-Shan .
BIOSENSORS & BIOELECTRONICS, 2013, 42 :379-384
[8]   Graphene Oxide: Preparation, Functionalization, and Electrochemical Applications [J].
Chen, Da ;
Feng, Hongbin ;
Li, Jinghong .
CHEMICAL REVIEWS, 2012, 112 (11) :6027-6053
[9]  
El-Ansary A, 2010, NANOTECHNOL SCI APPL, V3, P65, DOI 10.2147/NSA.S8199
[10]   Electrochemical biosensor based on graphene oxide-Au nanoclusters composites for L-cysteine analysis [J].
Ge, Shenguang ;
Yan, Mei ;
Lu, Juanjuan ;
Zhang, Meng ;
Yu, Feng ;
Yu, Jinghua ;
Song, Xianrang ;
Yu, Shilin .
BIOSENSORS & BIOELECTRONICS, 2012, 31 (01) :49-54