Mixing at the external boundary of a submerged turbulent jet

被引:6
作者
Eidelman, A. [1 ]
Elperin, T. [1 ]
Kleeorin, N. [1 ]
Hazak, G. [2 ]
Rogachevskii, I. [1 ]
Sadot, O. [2 ]
Sapir-Katiraie, I. [1 ]
机构
[1] Ben Gurion Univ Negev, Dept Mech Engn, Pearlstone Ctr Aeronaut Engn Studies, IL-84105 Beer Sheva, Israel
[2] Nucl Res Ctr, Dept Phys, IL-84190 Beer Sheva, Israel
关键词
THERMAL-DIFFUSION; ELLIPTIC JETS; TRANSITION; DYNAMICS; FLUID; FLOW; TEMPERATURE; INSTABILITY; EXCITATION; SCALAR;
D O I
10.1103/PhysRevE.79.026311
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study experimentally and theoretically mixing at the external boundary of a submerged turbulent jet. In the experimental study we use particle image velocimetry and an image processing technique based on the analysis of the intensity of the Mie scattering to determine the spatial distribution of tracer particles. An air jet is seeded with the incense smoke particles, which are characterized by a large Schmidt number and a small Stokes number. We determine the spatial distributions of the jet fluid characterized by a high concentration of the particles and of the ambient fluid characterized by a low concentration of the tracer particles. In the data analysis we use two approaches, whereby one approach is based on the measured phase function for the study of the mixed state of two fluids. The other approach is based on the analysis of the two-point second-order correlation function of the particle number density fluctuations generated by tangling of the gradient of the mean particle number density by the turbulent velocity field. This gradient is formed at the external boundary of a submerged turbulent jet. We demonstrate that probability density function of the phase function of a jet fluid penetrating into an external flow and the two-point second-order correlation function of the particle number density do not have universal scaling and cannot be described by a power-law function. The theoretical predictions made in this study are in qualitative agreement with the obtained experimental results.
引用
收藏
页数:12
相关论文
共 49 条
[1]  
ADRIAN RJ, 1991, ANNU REV FLUID MECH, V23, P261, DOI 10.1146/annurev.fluid.23.1.261
[2]  
Batchelor G.K., 1971, THEORY HOMOGENEOUS T
[4]   Experimental study of turbulent thermal diffusion in oscillating grids turbulence [J].
Buchholz, J ;
Eidelman, A ;
Elperin, T ;
Grünefeld, G ;
Kleeorin, N ;
Krein, A ;
Rogachevskii, I .
EXPERIMENTS IN FLUIDS, 2004, 36 (06) :879-887
[5]   INSTABILITY OF AN ELLIPTIC JET [J].
CRIGHTON, DG .
JOURNAL OF FLUID MECHANICS, 1973, 59 (AUG7) :665-672
[6]   ORDERLY STRUCTURE IN JET TURBULENCE [J].
CROW, SC ;
CHAMPAGNE, FH .
JOURNAL OF FLUID MECHANICS, 1971, 48 (AUG16) :547-+
[7]   Turbulent mixing [J].
Dimotakis, PE .
ANNUAL REVIEW OF FLUID MECHANICS, 2005, 37 :329-356
[8]   STRUCTURE AND DYNAMICS OF ROUND TURBULENT JETS [J].
DIMOTAKIS, PE ;
MIAKELYE, RC ;
PAPANTONIOU, DA .
PHYSICS OF FLUIDS, 1983, 26 (11) :3185-3192
[9]   The mixing transition in turbulent flows [J].
Dimotakis, PE .
JOURNAL OF FLUID MECHANICS, 2000, 409 :69-98
[10]  
DREW DA, 1996, ANNU REV FLUID MECH, V15, P261