ON COMPLEX FINSLER SPACES WITH RANDERS METRIC

被引:28
作者
Aldea, Nicoleta [1 ]
Munteanu, Gheorghe [1 ]
机构
[1] Transilvania Univ, Fac Math & Informat, Brasov 500091, Romania
关键词
complex Finsler spaces; Randers spaces; MANIFOLDS;
D O I
10.4134/JKMS.2009.46.5.949
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we introduce in study a new class of complex Finsler spaces, namely the complex Randers spaces, for which the fundamental metric tensor and the Chern-Finsler connection are determined. A special approach is devoted to Kahler-Randers metrics. Using the length arc parametrization for the extremal curves of the Euler-Lagrange equations we obtain a complex nonlinear connections of Lorentz type in a complex Randers space.
引用
收藏
页码:949 / 966
页数:18
相关论文
共 50 条
  • [31] THE EQUATIONS OF A HOLOMORPHIC SUBSPACE IN A COMPLEX FINSLER SPACE
    Munteanu, Gheorghe
    [J]. PERIODICA MATHEMATICA HUNGARICA, 2007, 55 (01) : 97 - 112
  • [32] The equations of a holomorphic subspace in a complex Finsler space
    Gheorghe Munteanu
    [J]. Periodica Mathematica Hungarica, 2007, 55 : 97 - 112
  • [33] Spaces of Goldberg type on certain measured metric spaces
    Meda, Stefano
    Volpi, Sara
    [J]. ANNALI DI MATEMATICA PURA ED APPLICATA, 2017, 196 (03) : 947 - 981
  • [34] SOME UPPER ESTIMATES ON THE BOTTOM SPECTRUM OF FINSLER MEASURE SPACES
    E-Yin, S.
    Ruan, Q.
    [J]. ACTA MATHEMATICA HUNGARICA, 2022, 166 (02) : 552 - 564
  • [35] Existence of homogeneous geodesics on homogeneous Finsler spaces of odd dimension
    Yan, Zaili
    [J]. MONATSHEFTE FUR MATHEMATIK, 2017, 182 (01): : 165 - 171
  • [36] Convex Regions of Stationary Spacetimes and Randers Spaces. Applications to Lensing and Asymptotic Flatness
    Caponio, Erasmo
    Valeria Germinario, Anna
    Sanchez, Miguel
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2016, 26 (02) : 791 - 836
  • [37] Prime ends for domains in metric spaces
    Adamowicz, Tomasz
    Bjorn, Anders
    Bjorn, Jana
    Shanmugalingam, Nageswari
    [J]. ADVANCES IN MATHEMATICS, 2013, 238 : 459 - 505
  • [38] THE FOLIATED STRUCTURE OF CONTACT METRIC (κ,μ)-SPACES
    Cappelletti Montano, Beniamino
    [J]. ILLINOIS JOURNAL OF MATHEMATICS, 2009, 53 (04) : 1157 - 1172
  • [39] Concentration of empirical barycenters in metric spaces
    Brunel, Victor-Emmanuel
    Serres, Jordan
    [J]. INTERNATIONAL CONFERENCE ON ALGORITHMIC LEARNING THEORY, VOL 237, 2024, 237
  • [40] Kernel density estimation in metric spaces
    Gu, Chenfei
    Huang, Mian
    Song, Xinyu
    Wang, Xueqin
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2025,