Recent Progress in Capacity Enhancement of LiFePO4 Cathode for Li-Ion Batteries

被引:48
|
作者
Ahsan, Zishan [1 ]
Ding, Bo [1 ]
Cai, Zhenfei [1 ]
Wen, Cuie [2 ]
Yang, Weidong [3 ]
Ma, Yangzhou [1 ]
Zhang, Shihong [1 ]
Song, Guangsheng [1 ]
Javed, Muhammad Sufyan [4 ]
机构
[1] Anhui Univ Technol, Key Lab Green Fabricat & Surface Technol Adv Met, Minist Educ, Sch Mat Sci & Engn, Maanshan 243000, Anhui, Peoples R China
[2] RMIT Univ, Sch Engn, Melbourne, Vic 3083, Australia
[3] CSIRO, Future Mfg Flagship, Melbourne, Vic 3168, Australia
[4] Jinan Univ, Dept Phys, Siyuan Lab, Guangzhou 510632, Peoples R China
基金
安徽省自然科学基金;
关键词
carbon coating; cathode prelithiation additives; doping; Li-ion battery; lithium iron phosphate; batteries; CARBON-COATED LIFEPO4; LITHIUM IRON-PHOSPHATE; NITROGEN-DOPED CARBON; HIGH-RATE-CAPABILITY; IMPROVED ELECTROCHEMICAL PROPERTIES; SOLVOTHERMAL SYNTHESIS; RATE PERFORMANCE; VOLTAGE FADE; PHYTIC ACID; HIGH-POWER;
D O I
10.1115/1.4047222
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
LiFePO4 (lithium iron phosphate (LFP)) is a promising cathode material due to its environmental friendliness, high cycling performance, and safety characteristics. On the basis of these advantages, many efforts have been devoted to increasing specific capacity and high-rate capacity to satisfy the requirement for next-generation batteries with higher energy density. However, the improvement of LFP capacity is mainly affected by dynamic factors such as low Li-ion diffusion coefficient and poor electrical conductivity. The electrical conductivity and the diffusion of lithium ions can be enhanced by using novel strategies such as surface modification, particle size reduction, and lattice substitution (doping), all of which lead to improved electrochemical performance. In addition, cathode prelithiation additives have been proved to be quite effective in improving initial capacity for full cell application. The aim of this review paper is to summarize the strategies of capacity enhancement, to discuss the effect of the cathode prelithiation additives on specific capacity, and to analyze how the features of LFP (including its structure and phase transformation reaction) influence electrochemical properties. Based on this literature data analysis, we gain an insight into capacity-enhancement strategies and provide perspectives for the further capacity development of LFP cathode material.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Enhancement of the electrochemical performance of LiFePO4/carbon nanotubes composite electrode for Li-ion batteries
    Zhang, Haiyan
    Chen, Yuting
    Zheng, Chuchun
    Zhang, Danfeng
    He, Chunhua
    IONICS, 2015, 21 (07) : 1813 - 1818
  • [32] Recent progress and hurdles in cathode recycling for Li-ion batteries
    Jenis P.
    Zhang T.
    Ramasubramanian B.
    Lin S.
    Rayavarapu P.R.
    Yu J.
    Ramakrishna S.
    Circular Economy, 2024, 3 (02):
  • [33] Enhancement of the electrochemical performance of LiFePO4/carbon nanotubes composite electrode for Li-ion batteries
    Haiyan Zhang
    Yuting Chen
    Chuchun Zheng
    Danfeng Zhang
    Chunhua He
    Ionics, 2015, 21 : 1813 - 1818
  • [34] Preparation and characterization of LiFePO4/Ag composite for Li-ion batteries
    Chen, YK
    Okada, S
    Yamaki, J
    COMPOSITE INTERFACES, 2004, 11 (03) : 277 - 283
  • [35] PREPARATION AND SILVER MODIFICATION OF LIFEPO4/C FOR LI-ION BATTERIES
    Wang, Lian-Liang
    Ma, Pei-Hua
    Wen, Xian-Ming
    Zhang, Kun
    Deng, Xiao-Chuan
    JOURNAL OF THE CHILEAN CHEMICAL SOCIETY, 2009, 54 (02): : 144 - 146
  • [36] LiFePO4 safe Li-ion polymer batteries for clean environment
    Zaghib, K
    Charest, P
    Guerfi, A
    Shim, J
    Perrier, M
    Striebel, K
    JOURNAL OF POWER SOURCES, 2005, 146 (1-2) : 380 - 385
  • [37] Is LiFePO4 stable in water?: Toward greener li-ion batteries
    Porcher, W.
    Moreau, P.
    Lestriez, B.
    Jouanneau, S.
    Guyomard, D.
    ELECTROCHEMICAL AND SOLID STATE LETTERS, 2008, 11 (01) : A4 - A8
  • [38] Electrochemical performance of LiFePO4/GO composite for Li-ion batteries
    Rajoba, Swapnil J.
    Jadhav, Lata D.
    Kalubarme, Ramchandra S.
    Patil, Pramod S.
    Varma, S.
    Wani, B. N.
    CERAMICS INTERNATIONAL, 2018, 44 (06) : 6886 - 6893
  • [39] Probing the failure mechanism of nanoscale LiFePO4 for Li-ion batteries
    Gu, Meng
    Shi, Wei
    Zheng, Jianming
    Yan, Pengfei
    Zhang, Ji-guang
    Wang, Chongmin
    APPLIED PHYSICS LETTERS, 2015, 106 (20)
  • [40] Unsupported claims of ultrafast charging of LiFePO4 Li-ion batteries
    Zaghib, K.
    Goodenough, J. B.
    Mauger, A.
    Julien, C.
    JOURNAL OF POWER SOURCES, 2009, 194 (02) : 1021 - 1023