MULTIPLICITY AND CONCENTRATION OF SOLUTIONS FOR NONLINEAR FRACTIONAL ELLIPTIC EQUATIONS WITH STEEP POTENTIAL

被引:9
作者
Peng, Song [1 ]
Xia, Aliang [1 ]
机构
[1] Jiangxi Normal Univ, Dept Math, Nanchang 330022, Jiangxi, Peoples R China
关键词
Fractional Laplacian; steep potential; Nehari manifold; concave-convex term; POSITIVE SOLUTIONS; SCHRODINGER-EQUATIONS; NEHARI MANIFOLD; STATES;
D O I
10.3934/cpaa.2018058
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we prove the existence, multiplicity and concentration of non-trivial solutions for the following indefinite fractional elliptic equation with concave-convex nonlinearities: {(-Delta)(alpha)u + V-lambda(x)u = a(x)vertical bar u vertical bar(q-2)u + b(x)vertical bar u vertical bar(p-2)u in R-N, u >= 0 in R-N, where 0 < alpha < 1, N > 2 alpha, 1 < q < 2 < p < 2(alpha)*; with 2(alpha)*= 2N/(N - 2 alpha), the potential V-lambda(x) = lambda V+(x)- V-(x) with V-+/- = max{+/- V, 0} and the parameter lambda > 0. Our multiplicity results are based on studying the decomposition of the Nehari manifold.
引用
收藏
页码:1201 / 1217
页数:17
相关论文
共 50 条
[31]   Multiplicity results for elliptic fractional equations with subcritical term [J].
Bisci, Giovanni Molica ;
Radulescu, Vicentiu D. .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2015, 22 (04) :721-739
[32]   Multiplicity of positive solutions for fractional elliptic systems involving sign-changing weight [J].
Fan, Haining .
BOUNDARY VALUE PROBLEMS, 2017,
[33]   Multiplicity results for elliptic fractional equations with subcritical term [J].
Giovanni Molica Bisci ;
Vicenţiu D. Rădulescu .
Nonlinear Differential Equations and Applications NoDEA, 2015, 22 :721-739
[34]   Multiple positive solutions for nonlinear critical fractional elliptic equations involving sign-changing weight functions [J].
Quaas, Alexander ;
Xia, Aliang .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2016, 67 (03)
[35]   Multiple positive solutions for nonlinear critical fractional elliptic equations involving sign-changing weight functions [J].
Alexander Quaas ;
Aliang Xia .
Zeitschrift für angewandte Mathematik und Physik, 2016, 67
[36]   Multiplicity and Concentration Properties for Fractional Choquard Equations with Exponential Growth [J].
Liang, Shuaishuai ;
Shi, Shaoyun ;
Nguyen, Thin Van .
JOURNAL OF GEOMETRIC ANALYSIS, 2024, 34 (12)
[37]   Existence and multiplicity of positive solutions for a class of nonlinear elliptic problems [J].
Aghajani, Asadollah ;
Shamshiri, Jamile ;
Yaghoobi, Farajollah Mohammadi .
TURKISH JOURNAL OF MATHEMATICS, 2013, 37 (02) :286-298
[38]   Multiplicity and concentration of solutions to a fractional p-Laplace problem with exponential growth [J].
Thin, Nguyen Van .
ANNALES FENNICI MATHEMATICI, 2022, 47 (02) :603-639
[39]   Multiplicity of positive solutions for a class of fractional Schrodinger equations via penalization method [J].
Ambrosio, Vincenzo .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2017, 196 (06) :2043-2062
[40]   Existence and multiplicity of solutions for a class of fractional elliptic systems [J].
Manassés de Souza .
Collectanea Mathematica, 2020, 71 :103-122