MULTIPLICITY AND CONCENTRATION OF SOLUTIONS FOR NONLINEAR FRACTIONAL ELLIPTIC EQUATIONS WITH STEEP POTENTIAL

被引:9
作者
Peng, Song [1 ]
Xia, Aliang [1 ]
机构
[1] Jiangxi Normal Univ, Dept Math, Nanchang 330022, Jiangxi, Peoples R China
关键词
Fractional Laplacian; steep potential; Nehari manifold; concave-convex term; POSITIVE SOLUTIONS; SCHRODINGER-EQUATIONS; NEHARI MANIFOLD; STATES;
D O I
10.3934/cpaa.2018058
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we prove the existence, multiplicity and concentration of non-trivial solutions for the following indefinite fractional elliptic equation with concave-convex nonlinearities: {(-Delta)(alpha)u + V-lambda(x)u = a(x)vertical bar u vertical bar(q-2)u + b(x)vertical bar u vertical bar(p-2)u in R-N, u >= 0 in R-N, where 0 < alpha < 1, N > 2 alpha, 1 < q < 2 < p < 2(alpha)*; with 2(alpha)*= 2N/(N - 2 alpha), the potential V-lambda(x) = lambda V+(x)- V-(x) with V-+/- = max{+/- V, 0} and the parameter lambda > 0. Our multiplicity results are based on studying the decomposition of the Nehari manifold.
引用
收藏
页码:1201 / 1217
页数:17
相关论文
共 30 条
[1]   A critical fractional equation with concave convex power nonlinearities [J].
Barrios, B. ;
Colorado, E. ;
Servadei, R. ;
Soria, F. .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2015, 32 (04) :875-900
[2]   On some critical problems for the fractional Laplacian operator [J].
Barrios, B. ;
Colorado, E. ;
de Pablo, A. ;
Sanchez, U. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (11) :6133-6162
[3]   Nonlinear Schrodinger equations with steep potential well [J].
Bartsch, T ;
Pankov, A ;
Wang, ZQ .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2001, 3 (04) :549-569
[4]   EXISTENCE AND MULTIPLICITY RESULTS FOR SOME SUPERLINEAR ELLIPTIC PROBLEMS ON R(N) [J].
BARTSCH, T ;
WANG, ZQ .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1995, 20 (9-10) :1725-1741
[5]   The Nehari manifold for a semilinear elliptic equation with a sign-changing weight function [J].
Brown, KJ ;
Zhang, YP .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2003, 193 (02) :481-499
[6]   MULTIPLICITY AND CONCENTRATION OF POSITIVE SOLUTIONS FOR SEMILINEAR ELLIPTIC EQUATIONS WITH STEEP POTENTIAL [J].
Cheng, Yi-hsin ;
Wu, Tsung-Fang .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2016, 15 (06) :2457-2473
[7]   PERTURBATIONS OF A CRITICAL FRACTIONAL EQUATION [J].
Colorado, Eduardo ;
de Pablo, Arturo ;
Sanchez, Urko .
PACIFIC JOURNAL OF MATHEMATICS, 2014, 271 (01) :65-85
[8]   Best constants for Sobolev inequalities for higher order fractional derivatives [J].
Cotsiolis, A ;
Tavoularis, NK .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 295 (01) :225-236
[9]   CONCENTRATION PHENOMENA FOR THE NONLOCAL SCHRODINGER EQUATION WITH DIRICHLET DATUM [J].
Davila, Juan ;
del Pino, Manuel ;
Dipierro, Serena ;
Valdinoci, Enrico .
ANALYSIS & PDE, 2015, 8 (05) :1165-1235
[10]   Concentrating standing waves for the fractional nonlinear Schrodinger equation [J].
Davila, Juan ;
del Pino, Manuel ;
Wei, Juncheng .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 256 (02) :858-892