Proximity detector circuits: An alternative to tunnel diode oscillators for contactless measurements in pulsed magnetic field environments

被引:54
作者
Altarawneh, M. M. [1 ,2 ,3 ]
Mielke, C. H. [1 ]
Brooks, J. S. [2 ,3 ]
机构
[1] Los Alamos Natl Lab, MPA, NHMFL, Los Alamos, NM 87545 USA
[2] Florida State Univ, Dept Phys, Tallahassee, FL 32310 USA
[3] Florida State Univ, Natl High Magnet Field Lab, Tallahassee, FL 32310 USA
关键词
barium compounds; magnetic field measurement; potassium compounds; radiofrequency integrated circuits; radiofrequency oscillators; superconducting critical field;
D O I
10.1063/1.3152219
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
A radio frequency oscillator circuit based on a proximity detector integrated circuit is described as an alternative for the traditional tunnel diode oscillator used for pulsed magnetic field measurements at low temperatures. The proximity detector circuit design, although less sensitive than tunnel diode oscillator circuits, has a number of essential advantages for measurements in the extreme environments of pulsed magnetic fields. These include the insensitivity of operation to voltages induced in the inductor coil, the elimination of a diode bias circuit and tuning, and a broad dynamic range of resonant frequency variation. The circuit has been successfully applied to measure the superconducting upper critical field in Ba0.55K0.45Fe2As2 single crystals up to 60 T.
引用
收藏
页数:3
相关论文
共 14 条
[1]   Determination of anisotropic Hc2 up to 60 T in Ba0.55K0.45Fe2As2 single crystals [J].
Altarawneh, M. M. ;
Collar, K. ;
Mielke, C. H. ;
Ni, N. ;
Bud'ko, S. L. ;
Canfield, P. C. .
PHYSICAL REVIEW B, 2008, 78 (22)
[2]   TUNNEL-DIODE OSCILLATOR APPLICATION TO HIGH-SENSITIVITY DE-HAAS-VAN-ALPHEN AND SUPERCONDUCTING CRITICAL-FIELD STUDIES OF ANISOTROPIC ORGANIC CONDUCTORS [J].
ATHAS, GJ ;
BROOKS, JS ;
KLEPPER, SJ ;
UJI, S ;
TOKUMOTO, M .
REVIEW OF SCIENTIFIC INSTRUMENTS, 1993, 64 (11) :3248-3251
[3]   Low-temperature penetration depth of κ-(ET)2Cu[N(CN)2]Br and κ-(ET)2Cu(NCS)2 [J].
Carrington, A ;
Bonalde, IJ ;
Prozorov, R ;
Giannetta, RW ;
Kini, AM ;
Schlueter, J ;
Wang, HH ;
Geiser, U ;
Williams, JM .
PHYSICAL REVIEW LETTERS, 1999, 83 (20) :4172-4175
[4]   Fermiology and superconductivity studies on the non-tetrachalcogenafulvalene-structured organic superconductor β-(BDA-TTP)2SbF6 -: art. no. 174511 [J].
Choi, ES ;
Jobilong, E ;
Wade, A ;
Goetz, E ;
Brooks, JS ;
Yamada, J ;
Mizutani, T ;
Kinoshita, T ;
Tokumoto, M .
PHYSICAL REVIEW B, 2003, 67 (17)
[5]   Measuring radio frequency properties of materials in pulsed magnetic fields with a tunnel diode oscillator [J].
Coffey, T ;
Bayindir, Z ;
DeCarolis, JF ;
Bennett, M ;
Esper, G ;
Agosta, CC .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2000, 71 (12) :4600-4606
[6]  
Cohen L., 1913, FORMULAE TABLES CALC
[7]   CAPACITIVE TRANSIENT DETECTOR OF HIGH-SENSITIVITY [J].
ELLIS, FM ;
BROOKS, JS ;
HALLOCK, RB .
REVIEW OF SCIENTIFIC INSTRUMENTS, 1981, 52 (07) :1051-1053
[8]   Superconducting properties and Fermi-surface topology of the quasi-two-dimensional organic superconductor λ-(BETS)2GaCl4 (BETS bis(ethylene-dithio)tetraselenafulvalene) [J].
Mielke, C ;
Singleton, J ;
Nam, MS ;
Harrison, N ;
Agosta, CC ;
Fravel, B ;
Montgomery, LK .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2001, 13 (36) :8325-8345
[9]  
MIELKE CH, 1996, THESIS CLARK U
[10]   Quantum oscillations in the parent magnetic phase of an iron arsenide high temperature superconductor [J].
Sebastian, Suchitra E. ;
Gillett, J. ;
Harrison, N. ;
Lau, P. H. C. ;
Singh, D. J. ;
Mielke, C. H. ;
Lonzarich, G. G. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2008, 20 (42)