Three-dimensional unoccupied band structure of graphite: Very-low-energy electron diffraction and band calculations

被引:59
|
作者
Strocov, VN [1 ]
Blaha, P
Starnberg, HI
Rohlfing, M
Claessen, R
Debever, JM
Themlin, JM
机构
[1] Univ Mediterranee, CNRS, UMR 6631, Grp Phys Etats Condenses,Fac Sci Luminy, F-13288 Marseille 9, France
[2] Chalmers Univ Technol, Dept Phys, SE-41296 Gothenburg, Sweden
[3] Univ Gothenburg, SE-41296 Gothenburg, Sweden
[4] Vienna Tech Univ, Inst Phys & Theoret Chem, A-1060 Vienna, Austria
[5] Univ Munster, Inst Theoret Phys 2, D-48149 Munster, Germany
[6] Univ Augsburg, D-86135 Augsburg, Germany
[7] Inst High Performance Computat & Data Bases, St Petersburg 194291, Russia
来源
PHYSICAL REVIEW B | 2000年 / 61卷 / 07期
关键词
D O I
10.1103/PhysRevB.61.4994
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The unoccupied band structure of single-crystal graphite above the vacuum level is studied by very-low-energy electron diffraction. The position and dispersion of the three-dimensional bands coupling to vacuum, including the so-called interlayer state, are determined. The three-dimensional character prevails in the unoccupied bands, but quasi-two-dimensionality of this layered material results in their strongly non-free-electron dispersion. By comparison to a state-of-art density-functional and a many-body band calculation we identify self-energy corrections.
引用
收藏
页码:4994 / 5001
页数:8
相关论文
共 50 条
  • [41] Direct visualization of photonic band structure for three-dimensional photonic crystals
    Notomi, M
    Tamamura, T
    Ohtera, Y
    Hanaizumi, O
    Kawakami, S
    PHYSICAL REVIEW B, 2000, 61 (11): : 7165 - 7168
  • [42] Band Gaps and Vibration Isolation of a Three-dimensional Metamaterial with a Star Structure
    Jiang, Heng
    Zhang, Mangong
    Liu, Yu
    Pei, Dongliang
    Chen, Meng
    Wang, Yuren
    MATERIALS, 2020, 13 (17)
  • [43] Band structure of a HgTe-based three-dimensional topological insulator
    Gospodaric, J.
    Dziom, V
    Shuvaev, A.
    Dobretsova, A. A.
    Mikhailov, N. N.
    Kvon, Z. D.
    Novik, E. G.
    Pimenov, A.
    PHYSICAL REVIEW B, 2020, 102 (11)
  • [44] Prospects for structure solution by electron diffraction of three-dimensional protein crystals
    Abrahams, Jan Pieter
    Georgieva, Dilyana
    Jiang, Linhua
    Zandbergen, Henny W.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2008, 64 : C75 - C76
  • [45] Structure solution with three-dimensional sets of precessed electron diffraction intensities
    Gemmi, Mauro
    Nicolopoulos, Stavros
    ULTRAMICROSCOPY, 2007, 107 (6-7) : 483 - 494
  • [46] Very-low-energy electron diffraction on the H-terminated Si(111) surface:: Ab initio pseudopotential analysis
    Strocov, VN
    Mankefors, S
    Nilsson, PO
    Kanski, J
    Ilver, L
    Starnberg, HI
    PHYSICAL REVIEW B, 1999, 59 (08): : R5296 - R5299
  • [47] Spin-dependent surface barrier from very-low-energy electron diffraction fine structures: A feasibility study
    Burgbacher, U.
    Braun, J.
    Bruening, A. K.
    Schmidt, A. B.
    Donath, M.
    PHYSICAL REVIEW B, 2013, 87 (19):
  • [48] Direct three-dimensional Patterson inversion of low-energy electron diffraction I(E) curves
    Chang, CY
    Lin, ZC
    Chou, YC
    Wei, CM
    PHYSICAL REVIEW LETTERS, 1999, 83 (13) : 2580 - 2583
  • [49] UNOCCUPIED-ELECTRONIC-BAND STRUCTURE OF GRAPHITE STUDIED BY ANGLE-RESOLVED SECONDARY-ELECTRON EMISSION AND INVERSE PHOTOEMISSION
    MAEDA, F
    TAKAHASHI, T
    OHSAWA, H
    SUZUKI, S
    SUEMATSU, H
    PHYSICAL REVIEW B, 1988, 37 (09): : 4482 - 4488
  • [50] Three-dimensional structure of low density lipoproteins by electron cryomicroscopy
    Orlova, EV
    Sherman, MB
    Chiu, W
    Mowri, H
    Smith, LC
    Gotto, AM
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (15) : 8420 - 8425