Tuning of an electrospray ionization source for maximum peptide-ion transmission into a mass spectrometer

被引:69
作者
Geromanos, S
Freckleton, G
Tempst, P
机构
[1] Mem Sloan Kettering Canc Ctr, Prot Ctr, New York, NY 10021 USA
[2] Mem Sloan Kettering Canc Ctr, Program Mol Biol, New York, NY 10021 USA
关键词
D O I
10.1021/ac991071n
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
We describe assembly and optimization of a continuous now nanoelectrospray source for high-performance analysis on a routine basis. It is derived from an inJection adaptable Fine Ionization Source ("JaFIS"), previously shown to be durable and easy to use (Geromanos, S.; et al, Rapid Commun, Mass Spectrom, 1998, 12, 551-556) and now modified for maximum sensitivity. Proper design, manufacturing, and quality control of spray needles with specific orifice diameters, in combination with precisely controlled helium backpressure and applied voltage, enable stable flows at 1-2 nL/min, Needle positioning and ion spray potential are hereby exceedingly important, as shifts by 0.5 mm or 25 V, respectively, cause significant reduction in signal strength. In addition to prolonged analysis times, ultralow flows also yield higher sensitivity, the result of an improved "overall ion transfer efficiency" measured to be similar to 5% at 1.6 nL/min. Used in combination with a "microtip" (Erdjument-Bromage, H.; et al. J. Chromatogr. A 1998, 826, 167-181), the optimized JaFIS implements infusion-style ESI-MS at sensitivities approaching capillary LC-MS, Spraying times in excess of 20 h allow for any number of tandem mass spectrometric analysis routines to be performed, and to average thousands of scans in every experiment, thereby further improving sensitivity. This was fully illustrated by extensive analysis of a 2-fmol peptide mixture, in a 2-mu L volume, using a multimode MS approach.
引用
收藏
页码:777 / 790
页数:14
相关论文
共 75 条
[1]   The cell as a collection of protein machines: Preparing the next generation of molecular biologists [J].
Alberts, B .
CELL, 1998, 92 (03) :291-294
[2]  
ALEKSANDROV ML, 1985, DOKL PHYS CHEM, V277, P572
[3]  
ANDEN PE, 1994, J AM SOC MASS SPECTR, V5, P867
[4]   Identification of phosphorylation sites on neurofilament proteins by nanoelectrospray mass spectrometry [J].
Betts, JC ;
Blackstock, WP ;
Ward, MA ;
Anderton, BH .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (20) :12922-12927
[5]   Role of accurate mass measurement (±10 ppm) in protein identification strategies employing MS or MS MS and database searching [J].
Clauser, KR ;
Baker, P ;
Burlingame, AL .
ANALYTICAL CHEMISTRY, 1999, 71 (14) :2871-2882
[6]   A MICROSCALE ELECTROSPRAY INTERFACE FOR ONLINE, CAPILLARY LIQUID-CHROMATOGRAPHY TANDEM MASS-SPECTROMETRY OF COMPLEX PEPTIDE MIXTURES [J].
DAVIS, MT ;
STAHL, DC ;
HEFTA, SA ;
LEE, TD .
ANALYTICAL CHEMISTRY, 1995, 67 (24) :4549-4556
[7]   Rapid protein identification using a microscale electrospray LC/MS system on an ion trap mass spectrometer [J].
Davis, MT ;
Lee, TD .
JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY, 1998, 9 (03) :194-201
[8]   THE EFFECT OF CHARGE EMISSION FROM ELECTRIFIED LIQUID CONES [J].
DELAMORA, JF .
JOURNAL OF FLUID MECHANICS, 1992, 243 :561-574
[9]   Exploring the metabolic and genetic control of gene expression on a genomic scale [J].
DeRisi, JL ;
Iyer, VR ;
Brown, PO .
SCIENCE, 1997, 278 (5338) :680-686
[10]   DIRECT COUPLING OF OPEN-TUBULAR LIQUID-CHROMATOGRAPHY WITH MASS-SPECTROMETRY [J].
DEWIT, JSM ;
PARKER, CE ;
TOMER, KB ;
JORGENSON, JW .
ANALYTICAL CHEMISTRY, 1987, 59 (19) :2400-2404