共 43 条
Preparation and characterization of emulsion poly(vinyl chloride) (EPVC)/TiO2 nanocomposite ultrafiltration membrane
被引:179
作者:
Rabiee, Hesamoddin
[1
]
Farahani, Mohammad Hossein Davood Abadi
[1
]
Vatanpour, Vahid
[1
]
机构:
[1] Kharazmi Univ, Fac Chem, Tehran 1571914911, Iran
关键词:
Mixed matrix membrane;
Poly(vinyl chloride);
TiO2;
Ultrafiltration;
Antifouling;
TIO2;
NANOPARTICLES;
ANTIFOULING PROPERTY;
HYBRID MEMBRANES;
PVDF MEMBRANE;
PERFORMANCE;
COMPOSITE;
MORPHOLOGIES;
WATER;
PVP;
HYDROPHILICITY;
D O I:
10.1016/j.memsci.2014.08.051
中图分类号:
TQ [化学工业];
学科分类号:
0817 ;
摘要:
Emulsion poly(vinyl chloride)/titanium dioxide (EPVC/TiO2) nanocomposite ultrafiltration membranes were prepared using the phase inversion method with different TiO2 contents. Pure water flux through the membranes was investigated at a operating pressure of 2 bar and its antifouling properties were studied using bovine serum albumin (BSA) as a foulant. The results showed an increment in pure water flux with increasing content of TiO2 up to 2 wt%, and then it slightly decreased by addition of 14 wt% TiO2 due to agglomeration of the nanoparticles at this content. The static water contact angle test showed improvement in membrane hydrophilicity, due to hydrophilic behavior of the nanoparticles, which led to higher water flux. SEM and EDAX analyses were applied to investigate membrane morphological changes. EDAX analysis indicated that the nanoparticles are homogeneously dispersed in membrane structure at low concentrations. However, at high loading, the nanoparticles have a propensity to aggregate. SEM images showed that with TiO2 addition, initially finger-like structures change to macro-voids and after 1 wt% TiO2 loading, they return to finger-like construction with elongated finger-like pores. TiO2 addition also enhanced BSA rejection properties. BSA ultrafiltration experiments showed that the antifouling ability of nano-TiO2 embedded membranes was better than the unfilled EPVC membrane. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:185 / 193
页数:9
相关论文