Active control of pressure fluctuations due to flow over Helmholtz resonators

被引:35
作者
Kook, H
Mongeau, L
Franchek, MA
机构
[1] Kookmin Univ, Sch Mech & Automat Engn, Songbuk Gu, Seoul 136702, South Korea
[2] Purdue Univ, Sch Mech Engn, Ray W Herrick Labs, W Lafayette, IN 47907 USA
关键词
D O I
10.1006/jsvi.2001.4149
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Grazing flows over Helmholtz resonators may result in self-sustained flow oscillations at the Helmholtz acoustic resonance frequency of the cavity system. The associated pressure fluctuations may be undesirable. Many solutions have been proposed to solve this problem including, for example, leading edge spoilers, trailing edge deflectors, and leading edge flow diffusers. Most of these control devices are "passive", i.e., they do not involve dynamic control systems. Active control methods, which do require dynamic controls, have been implemented with success for different cases of flow instabilities. Previous investigations of the control of flow-excited cavity resonance have used mainly one or more loudspeakers located within the cavity wall. In the present study, oscillated spoilers hinged near the leading edge of the cavity orifice were used. Experiments were performed using a cavity installed within the test section wall of a wind tunnel. A microphone located within the cavity was used as the feedback sensor. A loop shaping feedback control design methodology was used in order to ensure robust controller performance over varying flow conditions. Cavity pressure level attenuation of up to 20 dB was achieved around the critical velocity (i.e., the velocity for which the fundamental excitation frequency matches the Helmholtz resonance frequency of the cavity), relative to the level in the presence of the spoiler held stationary. The required actuation effort was small. The spoiler peak displacement was typically only 4% of the mean spoiler angle (approximately 1). The control scheme was found to provide robust performance for transient operating conditions. Oscillated leading edge spoilers offer potential advantages over loudspeakers for cavity resonance control, including a reduced encumbrance (especially for low-frequency applications), and a reduced actuation effort. (C) 2002 Published by Elsevier Science Ltd.
引用
收藏
页码:61 / 76
页数:16
相关论文
共 29 条
[1]   SELF-SUSTAINED AEROACOUSTIC PULSATIONS IN GAS-TRANSPORT SYSTEMS - EXPERIMENTAL-STUDY OF THE INFLUENCE OF CLOSED SIDE BRANCHES [J].
BRUGGEMAN, JC ;
HIRSCHBERG, A ;
VANDONGEN, MEH ;
WIJNANDS, APJ ;
GORTER, J .
JOURNAL OF SOUND AND VIBRATION, 1991, 150 (03) :371-393
[2]  
Cattafesta L., 1999, P 33 AIAA THERM C NO, P676
[3]   Piezoelectric actuators for fluid-flow control [J].
Cattafesta, LN ;
Garg, S ;
Washburn, AE .
INDUSTRIAL AND COMMERCIAL APPLICATIONS OF SMART STRUCTURES TECHNOLOGIES: SMART STRUCTURES AND MATERIALS 1997, 1997, 3044 :147-157
[4]  
CATTAFESTA LN, 1997, 28 AIAA FLUID DYN C
[5]  
FFOWCSWILLIAMS JE, 1989, J FLUID MECH, V204, P245
[6]  
HEATWOLE C, 1997, THESIS PURDUE U
[7]  
Horowitz I., 1993, QUANTITATIVE FEEDBAC
[8]   Analysis of the interior pressure oscillations induced by flow over vehicle openings [J].
Kook, H ;
Mongeau, L ;
Brown, DV ;
Zorea, SI .
NOISE CONTROL ENGINEERING JOURNAL, 1997, 45 (06) :223-234
[9]  
KOOK H, 1997, T ASME, P361
[10]  
McGrath S. F, 1996, P 27 AIAA FLUID DYN, DOI [10.2514/6.1996-1949, DOI 10.2514/6.1996-1949]