Algebrability of the set of non-convergent Fourier series

被引:81
作者
Aron, Richard M. [1 ]
Perez-Garcia, David
Seoane-Sepulveda, Juan B.
机构
[1] Kent State Univ, Dept Math, Kent, OH 44242 USA
[2] Univ Rey Juan Carlos, ESCET, Dept Matemat Aplicada, Madrid 28933, Spain
关键词
Fourier series; divergent series; lineability; spaceability; algebrability;
D O I
10.4064/sm175-1-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that, given a set E subset of T of measure zero, the set of continuous functions whose Fourier series expansion is divergent at any point t is an element of E is dense-algebrable, i.e. there exists an infinite-dimensional, infinitely generated dense subalgebra, of C(T) every non-zero element of which has a Fourier series expansion divergent in E.
引用
收藏
页码:83 / 90
页数:8
相关论文
共 12 条
[1]   Lineability and spaceability of sets of functions on R [J].
Aron, R ;
Gurariy, VI ;
Seoane, JB .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (03) :795-803
[2]  
Aron R., 2001, RACSAM REV R ACAD A, V95, P7
[3]  
ARON RM, IN PRESS B BELG MATH
[4]  
BAYART F, 2005, STUD MATH, V167, P153
[5]  
ENFLO P, LINEABILITY SPACEABI
[6]  
Fonf V. P., 1999, C. R. Acad. Bulgare Sci., V52, P13
[7]   On lineability of sets of continuous functions [J].
Gurariy, VI ;
Quarta, L .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 294 (01) :62-72
[8]   Isometrical embeddings of separable Banach spaces into the set of nowhere approximatively differentiable and nowhere Holder functions [J].
Hencl, S .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (12) :3505-3511
[9]  
KORNER TW, 1988, FOURIER ANAL