Uniqueness of codes using semidefinite programming

被引:0
作者
Brouwer, Andries E. [1 ]
Polak, Sven C. [1 ]
机构
[1] Univ Amsterdam, Korteweg De Vries Inst Math, Amsterdam, Netherlands
基金
欧洲研究理事会;
关键词
Code; Binary code; Uniqueness; Semidefinite programming; Golay; BOUNDS;
D O I
10.1007/s10623-018-0589-8
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Forn,d,wN, letA(n,d,w) denote the maximum size of a binary code of word lengthn, minimum distanced and constant weightw. Schrijver recently showed using semidefinite programming that A(23,8,11)=1288, and the second author thatA(22,8,11)=672 andA(22,8,10)=616. Here we show uniqueness of the codes achieving these bounds. LetA(n,d) denote the maximum size of a binary code of word lengthn and minimum distanced. Gijswijt et al. showed thatA(20,8)=256. We show that there are several nonisomorphic codes achieving this bound, and classify all such codes with all distances divisible by 4.
引用
收藏
页码:1881 / 1895
页数:15
相关论文
共 15 条
  • [1] [Anonymous], 1983, THEORY ERROR CORRECT
  • [2] Brouwer, 1995, HDB COMBINATORICS, P693
  • [3] Brouwer A.E., COMPUTER PROGRAMS
  • [4] Brouwer A.E, TABLES BOUNDS A N D
  • [5] Delsarte P., 1973, PHILIPS RES REPTS S
  • [6] DODUNEKOV SM, 1993, PROBL PEREDACHI INF, V29, P45
  • [7] Semidefinite Code Bounds Based on Quadruple Distances
    Gijswijt, Dion C.
    Mittelmann, Hans D.
    Schrijver, Alexander
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2012, 58 (05) : 2697 - 2705
  • [8] Semidefinite bounds for nonbinary codes based on quadruples
    Litjens, Bart
    Polak, Sven
    Schrijver, Alexander
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2017, 84 (1-2) : 87 - 100
  • [9] Practical graph isomorphism, II
    McKay, Brendan D.
    Piperno, Adolfo
    [J]. JOURNAL OF SYMBOLIC COMPUTATION, 2014, 60 : 94 - 112
  • [10] Nakata M., 2010, 2010 IEEE International Symposium on Computer-Aided Control System Design (CACSD) part of the IEEE Multi-Conference on Systems & Control (MSC 2010), P29, DOI 10.1109/CACSD.2010.5612693