The integral K-theoretic Novikov conjecture for groups with finite asymptotic dimension

被引:28
作者
Carlsson, G [1 ]
Goldfarb, B
机构
[1] Stanford Univ, Dept Math, Stanford, CA 94305 USA
[2] SUNY Albany, Dept Math & Stat, Albany, NY 12222 USA
关键词
Disjoint Union; Asymptotic Dimension; Compact Space; Coxeter Group; Weak Equivalence;
D O I
10.1007/s00222-003-0356-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The integral assembly map in algebraic K-theory is split injective for any geometrically finite discrete group with finite asymptotic dimension.
引用
收藏
页码:405 / 418
页数:14
相关论文
共 10 条
[1]  
Bell G, 2001, Algebr. Geom. Topol., V1, P57
[2]  
BELL G, 2002, ARXIVMATHGR0212032
[3]  
CARLSSON G, HOMOLOGICAL COHERENC
[4]  
CARLSSON G, 1995, NOVIKOV CONJECTURES, V2, P5
[5]  
Carlsson G., 1995, K-THEORY, V9, P305
[6]  
DRANISHNIKOV A, 1999, TOPOLOGY P, V24, P135
[7]   On hypersphericity of manifolds with finite asymptotic dimension [J].
Dranishnikov, AN .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 355 (01) :155-167
[8]   Asymptotic topology [J].
Dranishnikov, AN .
RUSSIAN MATHEMATICAL SURVEYS, 2000, 55 (06) :1085-1129
[9]  
GROMOV M, 1993, GEOMETRIC GROUPS THE, V2
[10]   The Novikov conjecture for groups with finite asymptotic dimension [J].
Yu, GL .
ANNALS OF MATHEMATICS, 1998, 147 (02) :325-355