Uniform in time interacting particle approximations for nonlinear equations of Patlak-Keller-Segel type

被引:19
作者
Budhiraja, Amarjit
Fan, Wai-Tong
机构
基金
美国国家科学基金会;
关键词
weakly interacting particle systems; uniform propagation of chaos; McKean-Vlasov equations; kinetic equations; chemotaxis; reinforced diffusions; Patlak-Keller-Segel equations; granular media equations; uniform exponential concentration bounds; long time behavior; uniform in time Euler approximations; GRANULAR MEDIA EQUATIONS; MODEL; CONVERGENCE; CHEMOTAXIS;
D O I
10.1214/17-EJP25
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study a system of interacting diffusions that models chemotaxis of biological cells or microorganisms (referred to as particles) in a chemical field that is dynamically modified through the collective contributions from the particles. Such systems of reinforced diffusions have been widely studied and their hydrodynamic limits that are nonlinear non-local partial differential equations are usually referred to as PatlakKeller- Segel (PKS) equations. Solutions of the classical PKS equation may blow up in finite time and much of the PDE literature has been focused on understanding this blow-up phenomenon. In this work we study a modified form of the PKS equation that is natural for applications and for which global existence and uniqueness of solutions are easily seen to hold. Our focus here is instead on the study of the long time behavior through certain interacting particle systems. Under the so-called "quasi-stationary hypothesis" on the chemical field, the limit PDE reduces to a parabolic-elliptic system that is closely related to granular media equations whose time asymptotic properties have been extensively studied probabilistically through certain Lyapunov functions [17, 4, 9]. The modified PKS equation studied in the current work is a parabolic-parabolic system for which analogous Lyapunov function constructions are not available. A key challenge in the analysis is that the associated interacting particle system is not a Markov process as the interaction term depends on the whole history of the empirical measure. We establish, under suitable conditions, uniform in time convergence of the empirical measure of particle states to the solution of the PDE. We also provide uniform in time exponential concentration bounds for rate of the above convergence under additional integrability conditions. Finally, we introduce an Euler discretization scheme for the simulation of the interacting particle system and give error bounds that show that the scheme converges uniformly in time and in the size of the particle system as the discretization parameter approaches zero.
引用
收藏
页数:37
相关论文
共 25 条
[1]  
[Anonymous], ARXIV14066006
[2]  
[Anonymous], 2007, BROWNIAN AGENTS ACTI
[3]   CROSS DIFFUSION AND NONLINEAR DIFFUSION PREVENTING BLOW UP IN THE KELLER-SEGEL MODEL [J].
Antonio Carrillo, Jose ;
Hittmeir, Sabine ;
Juengel, Ansgar .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2012, 22 (12)
[4]   Local and global well-posedness for aggregation equations and Patlak-Keller-Segel models with degenerate diffusion [J].
Bedrossian, Jacob ;
Rodriguez, Nancy ;
Bertozzi, Andrea L. .
NONLINEARITY, 2011, 24 (06) :1683-1714
[5]   A non-Maxwellian steady distribution for one-dimensional granular media [J].
Benedetto, D ;
Caglioti, E ;
Carrillo, JA ;
Pulvirenti, M .
JOURNAL OF STATISTICAL PHYSICS, 1998, 91 (5-6) :979-990
[6]  
Bihari I., 1956, Acta_Mathematica_Academiae_Scientiarum_Hungarica, V7, P81, DOI DOI 10.1007/BF02022967
[7]   Quantitative concentration inequalities for empirical measures on non-compact spaces [J].
Bolley, Francois ;
Guillin, Arnaud ;
Villani, Cedric .
PROBABILITY THEORY AND RELATED FIELDS, 2007, 137 (3-4) :541-593
[8]  
Calvez V, 2008, COMMUN MATH SCI, V6, P417
[9]  
Carrillo JA, 2003, REV MAT IBEROAM, V19, P971
[10]   Probabilistic approach for granular media equations in the non-uniformly convex case [J].
Cattiaux, P. ;
Guillin, A. ;
Malrieu, F. .
PROBABILITY THEORY AND RELATED FIELDS, 2008, 140 (1-2) :19-40