Genetically engineering Synechocystis sp Pasteur Culture Collection 6803 for the sustainable production of the plant secondary metabolite p-coumaric acid

被引:50
作者
Xue, Yong [1 ]
Zhang, Yan [2 ]
Cheng, Dan [1 ]
Daddy, Soumana [1 ]
He, Qingfang [1 ,2 ]
机构
[1] Univ Arkansas, Dept Appl Sci, Little Rock, AR 72204 USA
[2] Shandong Acad Agr Sci, Biotechnol Res Ctr, Jinan 250100, Shandong, Peoples R China
基金
美国国家科学基金会;
关键词
ESCHERICHIA-COLI; PHENYLPROPANOID METABOLISM; CAFFEIC ACID; BIOSYNTHESIS; CYANOBACTERIA; ANTIOXIDANTS; RESVERATROL; EXPRESSION; LACCASES; CANCER;
D O I
10.1073/pnas.1323725111
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
p-Coumaric acid is the precursor of phenylpropanoids, which are plant secondary metabolites that are beneficial to human health. Tyrosine ammonia lyase catalyzes the production of p-coumaric acid from tyrosine. Because of their photosynthetic ability and biosynthetic versatility, cyanobacteria are promising candidates for the production of certain plant metabolites, including phenylpropanoids. Here, we produced p-coumaric acid in a strain of transgenic cyanobacterium Synechocystis sp. Pasteur Culture Collection 6803 (hereafter Synechocystis 6803). Whereas a strain of Synechocystis 6803 genetically engineered to express sam8, a tyrosine ammonia lyase gene from the actinomycete Saccharothrix espanaensis, accumulated little or no p-coumaric acid, a strain that both expressed sam8 and lacked slr1573, a native hypothetical gene shown here to encode a laccase that oxidizes polyphenols, produced similar to 82.6 mg/L p-coumaric acid, which was readily purified from the growth medium.
引用
收藏
页码:9449 / 9454
页数:6
相关论文
共 30 条
[1]   Metabolic engineering of Saccharomyces cerevisiae for the synthesis of the wine-related antioxidant resveratrol [J].
Becker, JVW ;
Armstrong, GO ;
Van der Merwe, MJ ;
Lambrechts, MG ;
Vivier, MA ;
Pretorius, IS .
FEMS YEAST RESEARCH, 2003, 4 (01) :79-85
[2]   STEADY-STATE KINETICS OF PEROXIDASE WITH 2,2'-AZINO-DI-(3-ETHYLBENZTHIAZOLINE-6-SULPHONIC ACID) AS CHROMOGEN [J].
CHILDS, RE ;
BARDSLEY, WG .
BIOCHEMICAL JOURNAL, 1975, 145 (01) :93-103
[3]   Biosynthesis of plant-specific phenylpropanoids by construction of an artificial biosynthetic pathway in Escherichia coli [J].
Choi, Oksik ;
Wu, Cheng-Zhu ;
Kang, Sun Young ;
Ahn, Jong Seog ;
Uhm, Tai-Boong ;
Hong, Young-Soo .
JOURNAL OF INDUSTRIAL MICROBIOLOGY & BIOTECHNOLOGY, 2011, 38 (10) :1657-1665
[4]   Laccases: structure, reactions, distribution [J].
Claus, H .
MICRON, 2004, 35 (1-2) :93-96
[5]  
de la Lastra CA, 2005, MOL NUTR FOOD RES, V49, P405
[6]   STRESS-INDUCED PHENYLPROPANOID METABOLISM [J].
DIXON, RA ;
PAIVA, NL .
PLANT CELL, 1995, 7 (07) :1085-1097
[7]   Phenylpropanoid metabolism and lignin biosynthesis: From weeds to trees [J].
Douglas, CJ .
TRENDS IN PLANT SCIENCE, 1996, 1 (06) :171-178
[8]   Engineering cyanobacteria to generate high-value products [J].
Ducat, Daniel C. ;
Way, Jeffrey C. ;
Silver, Pamela A. .
TRENDS IN BIOTECHNOLOGY, 2011, 29 (02) :95-103
[9]  
Duthie G, 2000, CURR OPIN LIPIDOL, V11, P43, DOI 10.1097/00075197-200011000-00006
[10]  
ELHAI J, 1988, METHOD ENZYMOL, V167, P747