Almost everywhere convergence of Bochner-Riesz means on Heisenberg-type groups

被引:3
作者
Horwich, Adam D. [1 ]
Martini, Alessio [1 ]
机构
[1] Univ Birmingham, Sch Math, Birmingham B15 2TT, W Midlands, England
来源
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES | 2021年 / 103卷 / 03期
基金
英国工程与自然科学研究理事会;
关键词
22E30; 43A80 (primary); OSCILLATORY INTEGRAL-OPERATORS; SPECTRAL MULTIPLIERS; EIGENFUNCTION-EXPANSIONS; RESTRICTION THEOREM; BOUNDS; FOURIER; INTERPOLATION; INEQUALITIES; SUMMABILITY;
D O I
10.1112/jlms.12401
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove an almost everywhere convergence result for Bochner-Riesz means of Lp functions on Heisenberg-type groups, yielding the existence of a p>2 for which convergence holds for means of arbitrarily small order. The proof hinges on a reduction of weighted L2 estimates for the maximal Bochner-Riesz operator to corresponding estimates for the non-maximal operator, and a 'dual Sobolev trace lemma', whose proof is based on refined estimates for Jacobi polynomials.
引用
收藏
页码:1066 / 1119
页数:54
相关论文
共 77 条
[1]   ALMOST EVERYWHERE CONVERGENCE FOR MODIFIED BOCHNER-RIESZ MEANS AT THE CRITICAL INDEX FOR p ≥ 2 [J].
Annoni, Marco .
PACIFIC JOURNAL OF MATHEMATICS, 2017, 286 (02) :257-275
[2]  
[Anonymous], 1996, P CMA
[3]  
[Anonymous], 1976, Lecture Notes in Mathematics
[4]   Hardy's uncertainty principle on certain Lie groups [J].
Astengo, F ;
Cowling, M ;
Di Blasio, B ;
Sundari, M .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2000, 62 :461-472
[5]  
Bennett C., 1988, Interpolation of Operators
[6]   BOUNDS ON OSCILLATORY INTEGRAL OPERATORS BASED ON MULTILINEAR ESTIMATES [J].
Bourgain, Jean ;
Guth, Larry .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2011, 21 (06) :1239-1295
[8]   A NOTE ON THE INTERPOLATION OF SUBLINEAR OPERATIONS [J].
CALDERON, AP ;
ZYGMUND, A .
AMERICAN JOURNAL OF MATHEMATICS, 1956, 78 (02) :282-288
[9]   THE BOUNDEDNESS OF THE MAXIMAL BOCHNER-RIESZ OPERATOR ON L4(R2) [J].
CARBERY, A .
DUKE MATHEMATICAL JOURNAL, 1983, 50 (02) :409-416
[10]  
CARBERY A, 1988, J LOND MATH SOC, V38, P513