An accurate curved boundary treatment in the lattice Boltzmann method

被引:530
作者
Mei, RW [1 ]
Luo, LS
Shyy, W
机构
[1] Univ Florida, Dept Aerosp Engn Mech & Engn Sci, Gainesville, FL 32611 USA
[2] ICASE, NASA, Langley Res Ctr, Hampton, VA 23681 USA
基金
美国国家科学基金会;
关键词
D O I
10.1006/jcph.1999.6334
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The lattice Boltzmann equation (LBE) is an alternative kinetic method capable of solving hydrodynamics for various systems. Major advantages of the method are due to the fact that the solution for the particle distribution functions is explicit, easy to implement, and natural to parallelize. Because the method often uses uniform regular Cartesian lattices in space, curved boundaries are often approximated by a series of stairs that leads to reduction in computational accuracy. In this work, a second-order accurate treatment of the boundary condition in the LEE method is developed for a curved boundary. The proposed treatment of the curved boundaries is an improvement of a scheme due to O. Filippova and D. Hanel (1998, J. Comput. Phys. 147, 219). The proposed treatment for curved boundaries is tested against several flow problems: 2-D channel flows with constant and oscillating pressure gradients for which analytic solutions are known, flow due to an impulsively started wall, lid-driven square cavity flow, and uniform flow over a column of circular cylinders. The second-order accuracy is observed with a solid boundary arbitrarily placed between lattice nodes. The proposed boundary condition has well-behaved stability characteristics when the relaxation time is close to 1/2, the zero limit of viscosity. The improvement can make a substantial contribution toward simulating practical fluid flow problems using the lattice Boltzmann method. (C) 1999 Academic Press.
引用
收藏
页码:307 / 330
页数:24
相关论文
共 33 条
[1]   Derivation of the lattice Boltzmann method by means of the discrete ordinate method for the Boltzmann equation [J].
Abe, T .
JOURNAL OF COMPUTATIONAL PHYSICS, 1997, 131 (01) :241-246
[2]   SOLID-FLUID BOUNDARIES IN PARTICLE SUSPENSION SIMULATIONS VIA THE LATTICE BOLTZMANN METHOD [J].
BEHREND, O .
PHYSICAL REVIEW E, 1995, 52 (01) :1164-1175
[3]   THE LATTICE BOLTZMANN-EQUATION - THEORY AND APPLICATIONS [J].
BENZI, R ;
SUCCI, S ;
VERGASSOLA, M .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1992, 222 (03) :145-197
[4]   A MODEL FOR COLLISION PROCESSES IN GASES .1. SMALL AMPLITUDE PROCESSES IN CHARGED AND NEUTRAL ONE-COMPONENT SYSTEMS [J].
BHATNAGAR, PL ;
GROSS, EP ;
KROOK, M .
PHYSICAL REVIEW, 1954, 94 (03) :511-525
[5]   RECOVERY OF THE NAVIER-STOKES EQUATIONS USING A LATTICE-GAS BOLTZMANN METHOD [J].
CHEN, HD ;
CHEN, SY ;
MATTHAEUS, WH .
PHYSICAL REVIEW A, 1992, 45 (08) :R5339-R5342
[6]   Lattice Boltzmann method for fluid flows [J].
Chen, S ;
Doolen, GD .
ANNUAL REVIEW OF FLUID MECHANICS, 1998, 30 :329-364
[7]   On boundary conditions in lattice Boltzmann methods [J].
Chen, SY ;
Martinez, D ;
Mei, RW .
PHYSICS OF FLUIDS, 1996, 8 (09) :2527-2536
[8]   Grid refinement for lattice-BGK models [J].
Filippova, O ;
Hanel, D .
JOURNAL OF COMPUTATIONAL PHYSICS, 1998, 147 (01) :219-228
[9]  
FLETCH CAJ, 1988, COMPUTATIONAL TECHNI, V1
[10]   LATTICE-GAS AUTOMATA FOR THE NAVIER-STOKES EQUATION [J].
FRISCH, U ;
HASSLACHER, B ;
POMEAU, Y .
PHYSICAL REVIEW LETTERS, 1986, 56 (14) :1505-1508