The influence of sodium on biohydrogen production from food waste by anaerobic fermentation

被引:41
作者
Cao, Xianyan [1 ]
Zhao, Youcai [1 ]
机构
[1] Tongji Univ, State Key Lab Pollut Control & Resource Reuse, Sch Environm Sci & Engn, Shanghai 200092, Peoples R China
关键词
Biohydrogen; Fermentation; Food waste; Sodium; Inhibition; BIOLOGICAL HYDROGEN-PRODUCTION; ORGANIC FRACTION; PH; FEASIBILITY; GLUCOSE;
D O I
10.1007/s10163-009-0237-5
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Anaerobic fermentation of food waste for hydrogen production was performed in serum bottles with various linear alkylbenzene sulfonate (LAS) dosages (7.1-21.4 g/l) and sodium concentrations (5.03-28.7 g/l). LAS can effectively inhibit the activity of hydrogen-consuming bacteria, and the maximum hydrogen yield of 109.2 ml/g volatile solid (VS) was obtained at an LAS dosage of 14.3 g/l without added sodium. The feasible pH for hydrogen production is 5.0-6.0, and the process will slow down or stop when the pH is below 5.0.The hydrogen production potential increased when the sodium concentration increased in the range 5.03-14.41 g/l. The maximum hydrogen yield was 154.8 ml/g VS, and then the hydrogen production began to decrease when the sodium concentration increased further. A sodium chloride concentration of 20 g/l and higher will enhance the osmotic pressure and make bacteria inert. In the effluent, acetic acid is the major by-product. The results indicated that the hydrogen production from the anaerobic fermentation of food waste could clearly be increased with the additives and a sodium concentration less than 20 g/l.
引用
收藏
页码:244 / 250
页数:7
相关论文
共 22 条
[1]   Enhanced biohydrogen production from sewage sludge with alkaline pretreatment [J].
Cai, ML ;
Liu, JX ;
Wei, YS .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2004, 38 (11) :3195-3202
[2]  
Chen CC, 2001, APPL MICROBIOL BIOT, V57, P56
[3]  
COLLET C, 2001, INT J HYDROGEN ENERG, V91, P58
[4]   PARAMETERS AFFECTING SOLVENT PRODUCTION BY CLOSTRIDIUM-PASTEURIANUM [J].
DABROCK, B ;
BAHL, H ;
GOTTSCHALK, G .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1992, 58 (04) :1233-1239
[5]   Hydrogen production by biological processes: a survey of literature [J].
Das, D ;
Veziroglu, TN .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2001, 26 (01) :13-28
[6]   A COLORIMETRIC METHOD FOR THE DETERMINATION OF SUGARS [J].
DUBOIS, M ;
GILLES, K ;
HAMILTON, JK ;
REBERS, PA ;
SMITH, F .
NATURE, 1951, 168 (4265) :167-167
[7]   Effect of pH on hydrogen production from glucose by a mixed culture [J].
Fang, HHP ;
Liu, H .
BIORESOURCE TECHNOLOGY, 2002, 82 (01) :87-93
[8]   ANAEROBIC TREATMENT APPLICATIONS AND FUNDAMENTALS - SUBSTRATE-SPECIFICITY DURING PHASE-SEPARATION [J].
FOX, P ;
POHLAND, FG .
WATER ENVIRONMENT RESEARCH, 1994, 66 (05) :716-724
[9]   Biological hydrogen production: effects of pH and intermediate products [J].
Khanal, SK ;
Chen, WH ;
Li, L ;
Sung, SW .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2004, 29 (11) :1123-1131
[10]   Feasibility of biohydrogen production by anaerobic co-digestion of food waste and sewage sludge [J].
Kim, SH ;
Han, SK ;
Shin, HS .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2004, 29 (15) :1607-1616