Estimates for the first eigenvalue of Jacobi operator on hypersurfaces with constant mean curvature in spheres

被引:6
作者
Chen, Daguang [1 ]
Cheng, Qing-Ming [2 ]
机构
[1] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
[2] Fukuoka Univ, Dept Appl Math, Fac Sci, Fukuoka 8140180, Japan
关键词
RIEMANNIAN-MANIFOLDS; STABILITY EIGENVALUE; SCALAR CURVATURE;
D O I
10.1007/s00526-017-1132-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the first eigenvalue of Jacobi operator on an n-dimensional non-totally umbilical compact hypersurface with constant mean curvature H in the unit sphere Sn+1(1). We give an optimal upper bound for the first eigenvalue of Jacobi operator, which only depends on the mean curvature H and the dimension n. This bound is attained if and only if, phi : M -> Sn+1(1) is isometric to S-1(r) x Sn-1(root 1 - r(2)) when H not equal 0 or phi : M -> Sn+1(1) is isometric to a Clifford torus Sn-k (root n - k/n) x S-k (root k/n), for k = 1, 2, ... , n - 1 when H = 0.
引用
收藏
页数:12
相关论文
共 50 条
[31]   Local rigidity of constant mean curvature hypersurfaces in space forms [J].
Chen, Yayun ;
Li, Tongzhu .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2025, 543 (02)
[32]   Hypersurfaces with constant higher order mean curvature in Euclidean space [J].
Luis J. Alías ;
Josué Meléndez .
Geometriae Dedicata, 2016, 182 :117-131
[33]   On the generalized Chern conjecture for hypersurfaces with constant mean curvature in a sphere [J].
Li Lei ;
Hongwei Xu ;
Zhiyuan Xu .
Science China Mathematics, 2021, 64 :1493-1504
[34]   A CHARACTERIZATION OF QUADRIC CONSTANT GAUSS-KRONECKER CURVATURE HYPERSURFACES OF SPHERES [J].
Perdomo, Oscar M. ;
Wei, Guoxin .
ASIAN JOURNAL OF MATHEMATICS, 2015, 19 (02) :251-263
[35]   DEFORMING PINCHED HYPERSURFACES OF THE HYPERBOLIC SPACE BY POWERS OF THE MEAN CURVATURE INTO SPHERES [J].
Guo, Shunzi ;
Li, Guanghan ;
Wu, Chuanxi .
JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2016, 53 (04) :737-767
[36]   Estimate for index of hypersurfaces in spheres with null higher order mean curvature [J].
Barros, A. ;
Sousa, P. .
MONATSHEFTE FUR MATHEMATIK, 2010, 160 (03) :227-241
[37]   COMPLETE HYPERSURFACES WITH CONSTANT MEAN CURVATURE AND FINITE INDEX IN HYPERBOLIC SPACES [J].
Deng Qintao .
ACTA MATHEMATICA SCIENTIA, 2011, 31 (01) :353-360
[38]   Hypersurfaces in a hyperbolic space with constant k-th mean curvature [J].
Shu, Shichang ;
Han, Annie Yi .
BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2009, 52 (01) :65-78
[39]   A NEW GAP FOR COMPLETE HYPERSURFACES WITH CONSTANT MEAN CURVATURE IN SPACE FORMS [J].
Gu, Juan-Ru ;
Lei, Li ;
Xu, Hong-Wei .
PACIFIC JOURNAL OF MATHEMATICS, 2022, 318 (01) :51-67
[40]   Rigidity of hypersurfaces with constant higher order mean curvature in space forms [J].
Melendez, Josue ;
Palmas, Oscar .
BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2022, 28 (02)