Estimates for the first eigenvalue of Jacobi operator on hypersurfaces with constant mean curvature in spheres

被引:6
作者
Chen, Daguang [1 ]
Cheng, Qing-Ming [2 ]
机构
[1] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
[2] Fukuoka Univ, Dept Appl Math, Fac Sci, Fukuoka 8140180, Japan
关键词
RIEMANNIAN-MANIFOLDS; STABILITY EIGENVALUE; SCALAR CURVATURE;
D O I
10.1007/s00526-017-1132-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the first eigenvalue of Jacobi operator on an n-dimensional non-totally umbilical compact hypersurface with constant mean curvature H in the unit sphere Sn+1(1). We give an optimal upper bound for the first eigenvalue of Jacobi operator, which only depends on the mean curvature H and the dimension n. This bound is attained if and only if, phi : M -> Sn+1(1) is isometric to S-1(r) x Sn-1(root 1 - r(2)) when H not equal 0 or phi : M -> Sn+1(1) is isometric to a Clifford torus Sn-k (root n - k/n) x S-k (root k/n), for k = 1, 2, ... , n - 1 when H = 0.
引用
收藏
页数:12
相关论文
共 50 条
[21]   An estimate for the scalar curvature of constant mean curvature hypersurfaces in space forms [J].
Alias, Luis J. ;
Garcia-Martinez, S. Carolina .
GEOMETRIAE DEDICATA, 2012, 156 (01) :31-47
[22]   Stable complete noncompact hypersurfaces with constant mean curvature [J].
Chen, Jui-Tang Ray .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2009, 36 (02) :161-190
[23]   An estimate for the scalar curvature of constant mean curvature hypersurfaces in space forms [J].
Luis J. Alías ;
S. Carolina García-Martínez .
Geometriae Dedicata, 2012, 156 :31-47
[24]   Möbius geometry of hypersurfaces with constant mean curvature and scalar curvature [J].
Haizhong Li ;
Changping Wang .
manuscripta mathematica, 2003, 112 :1-13
[26]   Higher order mean curvature estimates for complete hypersurfaces into horoballs [J].
Cunha, A. W. ;
Medeiros, A. .
ACTA MATHEMATICA HUNGARICA, 2015, 147 (01) :19-31
[27]   Hypersurfaces with constant higher order mean curvature in Euclidean space [J].
Alias, Luis J. ;
Melendez, Josue .
GEOMETRIAE DEDICATA, 2016, 182 (01) :117-131
[28]   EMBEDDED HYPERSURFACES WITH CONSTANT mTH MEAN CURVATURE IN A UNIT SPHERE [J].
Wei, Guoxin ;
Cheng, Qing-Ming ;
Li, Haizhong .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2010, 12 (06) :997-1013
[29]   On the generalized Chern conjecture for hypersurfaces with constant mean curvature in a sphere [J].
Lei, Li ;
Xu, Hongwei ;
Xu, Zhiyuan .
SCIENCE CHINA-MATHEMATICS, 2021, 64 (07) :1493-1504
[30]   Hypersurfaces with constant higher order mean curvature in space forms [J].
Melendez, Josue ;
Palmas, Oscar .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2017, 51 :15-32