In this paper, we study the first eigenvalue of Jacobi operator on an n-dimensional non-totally umbilical compact hypersurface with constant mean curvature H in the unit sphere Sn+1(1). We give an optimal upper bound for the first eigenvalue of Jacobi operator, which only depends on the mean curvature H and the dimension n. This bound is attained if and only if, phi : M -> Sn+1(1) is isometric to S-1(r) x Sn-1(root 1 - r(2)) when H not equal 0 or phi : M -> Sn+1(1) is isometric to a Clifford torus Sn-k (root n - k/n) x S-k (root k/n), for k = 1, 2, ... , n - 1 when H = 0.
机构:
Sichuan Normal Univ, Inst Math & Software Sci, Chengdu 610066, Peoples R ChinaSichuan Normal Univ, Inst Math & Software Sci, Chengdu 610066, Peoples R China
机构:
Northwest Normal Univ, Coll Math & Stat, 967 Anning E Rd, Lanzhou 730070, Gansu, Peoples R ChinaNorthwest Normal Univ, Coll Math & Stat, 967 Anning E Rd, Lanzhou 730070, Gansu, Peoples R China
Liu, Jiancheng
Mi, Rong
论文数: 0引用数: 0
h-index: 0
机构:
Northwest Normal Univ, Coll Math & Stat, 967 Anning E Rd, Lanzhou 730070, Gansu, Peoples R ChinaNorthwest Normal Univ, Coll Math & Stat, 967 Anning E Rd, Lanzhou 730070, Gansu, Peoples R China
机构:
Univ Nacl Autonoma Mexico, Fac Ciencias, Dept Matemat, Mexico City 04510, DF, MexicoUniv Nacl Autonoma Mexico, Fac Ciencias, Dept Matemat, Mexico City 04510, DF, Mexico
Melendez, Josue
BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY,
2014,
45
(03):
: 385
-
404