Estimates for the first eigenvalue of Jacobi operator on hypersurfaces with constant mean curvature in spheres

被引:6
作者
Chen, Daguang [1 ]
Cheng, Qing-Ming [2 ]
机构
[1] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
[2] Fukuoka Univ, Dept Appl Math, Fac Sci, Fukuoka 8140180, Japan
关键词
RIEMANNIAN-MANIFOLDS; STABILITY EIGENVALUE; SCALAR CURVATURE;
D O I
10.1007/s00526-017-1132-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the first eigenvalue of Jacobi operator on an n-dimensional non-totally umbilical compact hypersurface with constant mean curvature H in the unit sphere Sn+1(1). We give an optimal upper bound for the first eigenvalue of Jacobi operator, which only depends on the mean curvature H and the dimension n. This bound is attained if and only if, phi : M -> Sn+1(1) is isometric to S-1(r) x Sn-1(root 1 - r(2)) when H not equal 0 or phi : M -> Sn+1(1) is isometric to a Clifford torus Sn-k (root n - k/n) x S-k (root k/n), for k = 1, 2, ... , n - 1 when H = 0.
引用
收藏
页数:12
相关论文
共 11 条
[1]   HYPERSURFACES WITH CONSTANT MEAN-CURVATURE IN SPHERES [J].
ALENCAR, H ;
DOCARMO, M .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 120 (04) :1223-1229
[2]  
Alias L. J., 2006, REV U MATH ARGENT, V47, P39
[3]   A spectral characterization of the H(r)-torus by the first stability eigenvalue [J].
Alías, LJ ;
Barros, A ;
Brasil, A .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (03) :875-884
[4]   STABILITY OF HYPERSURFACES OF CONSTANT MEAN-CURVATURE IN RIEMANNIAN-MANIFOLDS [J].
BARBOSA, JL ;
DOCARMO, M ;
ESCHENBURG, J .
MATHEMATISCHE ZEITSCHRIFT, 1988, 197 (01) :123-138
[5]  
Cheng, 1990, HIROSHIMA MATH J, V20, P1
[6]   Hypersurfaces in a unit sphere Sn+1(1) with constant scalar curvature [J].
Cheng, QM .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2001, 64 :755-768
[7]   The rigidity of Clifford torus S-1(root 1/n)xS(n-1)(root n-1/n) [J].
Cheng, QM .
COMMENTARII MATHEMATICI HELVETICI, 1996, 71 (01) :60-69
[8]  
Li HZ, 1996, MATH ANN, V305, P665
[9]   First stability eigenvalue characterization of Clifford hypersurfaces [J].
Perdomo, O .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 130 (11) :3379-3384
[10]   MINIMAL VARIETIES IN RIEMANNIAN MANIFOLDS [J].
SIMONS, J .
ANNALS OF MATHEMATICS, 1968, 88 (01) :62-&