A serniparametric binary regression model involving monotonicity constraints

被引:4
作者
Banerjee, Moulinath
Biswas, Pinaki
Ghosh, Debashis
机构
[1] Univ Michigan, Dept Stat, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Biostat, Ann Arbor, MI 48109 USA
关键词
binary regression; Brownian motion; chi-square distribution; Cox model; current status data; greatest convex minorant; likelihood ratio statistic; non-regular problem;
D O I
10.1111/j.1467-9469.2006.00499.x
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study a binary regression model using the complementary log-log link, where the response variable Delta is the indicator of an event of interest (for example, the incidence of cancer, or the detection of a turnout) and the set of covariates can be partitioned as (X,Z) where Z (real valued) is the primary covariate and X (vector valued) denotes a set of control variables. The conditional probability of the event of interest is assumed to be monotonic in Z, for every fixed X. A finite-dimensional (regression) parameter beta describes the effect of X. We show that the baseline conditional probability function (corresponding to X = 0) can be estimated by isotonic regression procedures and develop an asymptotically pivotal likelihood-ratio-based method for constructing (asymptotic) confidence sets for the regression function. We also show how likelihood-ratio-based confidence intervals for the regression parameter can be constructed using the chi-square distribution. An interesting connection to the Cox proportional hazards model under current status censoring emerges. We present simulation results to illustrate the theory and apply our results to a data set involving lung tumour incidence in mice.
引用
收藏
页码:673 / 697
页数:25
相关论文
共 22 条
[1]  
Banerjee M, 2001, ANN STAT, V29, P1699
[2]   AN ALGORITHM FOR ISOTONIC REGRESSION FOR 2 OR MORE INDEPENDENT VARIABLES [J].
DYKSTRA, RL ;
ROBERTSON, T .
ANNALS OF STATISTICS, 1982, 10 (03) :708-716
[3]   A PROPORTIONAL HAZARDS MODEL FOR INTERVAL-CENSORED FAILURE TIME DATA [J].
FINKELSTEIN, DM .
BIOMETRICS, 1986, 42 (04) :845-854
[4]   A SEMIPARAMETRIC MODEL FOR REGRESSION-ANALYSIS OF INTERVAL-CENSORED FAILURE TIME DATA [J].
FINKELSTEIN, DM ;
WOLFE, RA .
BIOMETRICS, 1985, 41 (04) :933-945
[5]  
Ghosal S, 2000, ANN STAT, V28, P1054
[6]   BROWNIAN-MOTION WITH A PARABOLIC DRIFT AND AIRY FUNCTIONS [J].
GROENEBOOM, P .
PROBABILITY THEORY AND RELATED FIELDS, 1989, 81 (01) :79-109
[7]  
Hall P, 2001, ANN STAT, V29, P624
[8]  
Hall P, 2000, ANN STAT, V28, P20
[9]   Monotone B-spline smoothing [J].
He, XM ;
Shi, P .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1998, 93 (442) :643-650
[10]  
HOEL DG, 1972, JNCI-J NATL CANCER I, V49, P361