On the stabilization of linear discrete-time systems

被引:3
作者
Ferreira, C [1 ]
Silva, FC
机构
[1] Univ Aveiro, Dept Matemat, P-3810193 Aveiro, Portugal
[2] Univ Lisbon, Fac Ciencias, Dept Matemat, P-1749016 Lisbon, Portugal
关键词
stability; stabilization; inertia of matrices; Hermitian matrices;
D O I
10.1016/j.laa.2004.03.040
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A pair of matrices (A, B), where A is p x p and B is p x q, is said to be positive stabilizable if there exists X such that A + BX is positive stable. In a previous paper, it was noticed that Lyapunov's criterium on matrix stability can be generalized as follows: (A, B) is positive stabilizable if and only if there exist a positive definite matrix H-1 and a matrix H-2 such that AH(1) + H(1)A* + BH2* + H2B* > 0; a generalization of the main inertia theorem was also given. (C) 2004 Published by Elsevier Inc.
引用
收藏
页码:7 / 18
页数:12
相关论文
共 12 条
[1]  
FERREIRA C, INERTIA THEOREMS PAI
[2]  
Hill R.D., 1969, LINEAR ALGEBRA APPL, V2, P131
[3]  
Lancaster P, 1985, THEORY MATRICES
[4]  
Ostrowski A., 1962, J MATH ANAL APPL, V4, P72
[5]  
SA EM, 1981, LINEAR ALGEBRA APPL, V37, P143
[6]  
Sontag E, 1998, MATH CONTROL THEORY
[7]   SOME GENERAL THEOREMS ON ITERANTS [J].
STEIN, P .
JOURNAL OF RESEARCH OF THE NATIONAL BUREAU OF STANDARDS, 1952, 48 (01) :82-83
[8]  
Taussky O., 1964, J. Algebra, V1, P5
[9]  
TAUSSKY O, 1961, SIAM J APPL MATH, V9, P640
[10]   EXISTENCE THEOREMS IN THEORY OF MATRICES AND LINEAR CONTROL-THEORY [J].
WIMMER, HK .
MONATSHEFTE FUR MATHEMATIK, 1974, 78 (03) :256-263