Surface-Assisted Alkane Polymerization: Investigation on Structure-Reactivity Relationship

被引:43
作者
Sun, Kewei [1 ]
Chen, Aixi [1 ]
Liu, Meizhuang [2 ,3 ]
Zhang, Haiming [1 ]
Duan, Ruomeng [4 ]
Ji, Penghui [1 ]
Li, Ling [1 ]
Li, Qing [1 ]
Li, Chen [4 ,5 ]
Zhong, Dingyong [2 ,3 ]
Muellen, Klaus [5 ,6 ]
Chi, Lifeng [1 ]
机构
[1] Soochow Univ, Inst Funct Nano & Soft Mat FUNSOM, Jiangsu Key Lab Carbon Based Funct Mat & Devices, Suzhou 215123, Peoples R China
[2] Sun Yat Sen Univ, Sch Phys, Guangzhou 510275, Guangdong, Peoples R China
[3] Sun Yat Sen Univ, State Key Lab Optoelect Mat & Technol, Guangzhou 510275, Guangdong, Peoples R China
[4] Dongguan Univ Technol, Sch Environm & Civil Engn, Dongguan 523808, Peoples R China
[5] Max Planck Inst Polymer Res, Ackermannweg 10, D-55128 Mainz, Germany
[6] Johannes Gutenberg Univ Mainz, Inst Phys Chem, Duesbergweg 10-14, D-55128 Mainz, Germany
基金
中国国家自然科学基金;
关键词
CATALYTICALLY ACTIVE GOLD; TEMPERATURE CO OXIDATION; STRUCTURE-SENSITIVITY; GRAPHENE NANORIBBONS; CATALYSIS; NANOPARTICLES; CHEMISTRY; NANOCRYSTALS; ADSORPTION; MONOLAYERS;
D O I
10.1021/jacs.7b09097
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Surface-assisted polymerization of alkanes is a remarkable reaction for which the surface reconstruction of Au(110) is crucial. The surface of (1x2)-Au(110) precovered with molecules can be completely transformed into (1x3)-Au(110) by introducing branched methylidene groups on both sides of the aliphatic chain (18, 19-dimethylidenehexatriacontane) or locally shifted into (1x3)-Au(110) under exposure to low-energy electrons (beam energy from 3.5 to 33.6 eV, for alkane dotriacontane). Scanning tunneling microscopy investigations demonstrate that alkane chains adsorbed on (1x3)Au(110) are more reactive than on (1x2)-Au(110), presenting a solid experimental proof for structure reactivity relationships. This difference can be ascribed to the existence of an extra row of gold atoms in the groove of (1x3)-Au(110), providing active sites of Au atoms with lower coordination number. The experimental results are further confirmed by density functional theory simulations.
引用
收藏
页码:4820 / 4825
页数:6
相关论文
共 38 条
[1]   FORMATION OF MONOLAYER FILMS BY THE SPONTANEOUS ASSEMBLY OF ORGANIC THIOLS FROM SOLUTION ONTO GOLD [J].
BAIN, CD ;
TROUGHTON, EB ;
TAO, YT ;
EVALL, J ;
WHITESIDES, GM ;
NUZZO, RG .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1989, 111 (01) :321-335
[2]   Design of a surface alloy catalyst for steam reforming [J].
Besenbacher, F ;
Chorkendorff, I ;
Clausen, BS ;
Hammer, B ;
Molenbroek, AM ;
Norskov, JK ;
Stensgaard, I .
SCIENCE, 1998, 279 (5358) :1913-1915
[3]   Catalysis by gold [J].
Bond, GC ;
Thompson, DT .
CATALYSIS REVIEWS-SCIENCE AND ENGINEERING, 1999, 41 (3-4) :319-388
[4]   Atomically precise bottom-up fabrication of graphene nanoribbons [J].
Cai, Jinming ;
Ruffieux, Pascal ;
Jaafar, Rached ;
Bieri, Marco ;
Braun, Thomas ;
Blankenburg, Stephan ;
Muoth, Matthias ;
Seitsonen, Ari P. ;
Saleh, Moussa ;
Feng, Xinliang ;
Muellen, Klaus ;
Fasel, Roman .
NATURE, 2010, 466 (7305) :470-473
[5]   Catalytically active gold on ordered titania supports [J].
Chen, Mingshu ;
Goodman, D. Wayne .
CHEMICAL SOCIETY REVIEWS, 2008, 37 (09) :1860-1870
[6]   The structure of catalytically active gold on titania [J].
Chen, MS ;
Goodman, DW .
SCIENCE, 2004, 306 (5694) :252-255
[7]  
Deng DH, 2016, NAT NANOTECHNOL, V11, P218, DOI [10.1038/nnano.2015.340, 10.1038/NNANO.2015.340]
[8]   Rolling a single molecular wheel at the atomic scale [J].
Grill, L. ;
Rieder, K. -H. ;
Moresco, F. ;
Rapenne, G. ;
Stojkovic, S. ;
Bouju, X. ;
Joachim, C. .
NATURE NANOTECHNOLOGY, 2007, 2 (02) :95-98
[9]   Direct, Nonoxidative Conversion of Methane to Ethylene, Aromatics, and Hydrogen [J].
Guo, Xiaoguang ;
Fang, Guangzong ;
Li, Gang ;
Ma, Hao ;
Fan, Hongjun ;
Yu, Liang ;
Ma, Chao ;
Wu, Xing ;
Deng, Dehui ;
Wei, Mingming ;
Tan, Dali ;
Si, Rui ;
Zhang, Shuo ;
Li, Jianqi ;
Sun, Litao ;
Tang, Zichao ;
Pan, Xiulian ;
Bao, Xinhe .
SCIENCE, 2014, 344 (6184) :616-619
[10]   LOW-TEMPERATURE OXIDATION OF CO OVER GOLD SUPPORTED ON TIO2, ALPHA-FE2O3, AND CO3O4 [J].
HARUTA, M ;
TSUBOTA, S ;
KOBAYASHI, T ;
KAGEYAMA, H ;
GENET, MJ ;
DELMON, B .
JOURNAL OF CATALYSIS, 1993, 144 (01) :175-192