Adaptive wavelet-based estimator of the memory parameter for stationary Gaussian processes

被引:7
|
作者
Bardet, Jean-Marc [1 ]
Bibi, Hatem [1 ]
Jouini, Abdellatif [2 ]
机构
[1] Univ Paris 01, Samos Matisse CES, CNRS, UMR 8174, F-75013 Paris, France
[2] Fac Sci Tunis, Dept Math, Tunis 1060, Tunisia
关键词
wavelet analysis; long range dependence; memory parameter; semi-parametric estimation; adaptive estimation;
D O I
10.3150/07-BEJ6151
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This work is intended as a contribution to the theory of a wavelet-based adaptive estimator of the memory parameter in the classical semi-parametric framework for Gaussian stationary processes. In particular, we introduce and develop the choice of a data-driven optimal bandwidth. Moreover, we establish a central limit theorem for the estimator of the memory parameter with the minimax rate of convergence (Lip to a logarithm factor). The quality of the estimators is demonstrated via simulations.
引用
收藏
页码:691 / 724
页数:34
相关论文
共 50 条
  • [21] ASYMPTOTIC THEORY FOR MAXIMUM LIKELIHOOD ESTIMATION OF THE MEMORY PARAMETER IN STATIONARY GAUSSIAN PROCESSES
    Lieberman, Offer
    Rosemarin, Roy
    Rousseau, Judith
    ECONOMETRIC THEORY, 2012, 28 (02) : 457 - 470
  • [22] Wavelet-based parameter estimation for polynomial contaminated fractionally differenced processes
    Craigmile, PF
    Guttorp, P
    Percival, DB
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2005, 53 (08) : 3151 - 3161
  • [23] Wavelet-based nonparametric estimator of the variance function
    Pan, Zuohong
    Wang, Xiaodi
    Computational Economics, 2000, 15 (1-2) : 79 - 87
  • [24] Wavelet-based adaptive optics
    Jones, KJ
    WAVELETS: APPLICATIONS IN SIGNAL AND IMAGE PROCESSING X, PTS 1 AND 2, 2003, 5207 : 902 - 915
  • [25] Wavelet-based associative memory
    Jones, KJ
    INDEPENDENT COMPONENT ANALYSES, WAVELETS, UNSUPERVISED SMART SENSORS, AND NEURAL NETWORKS II, 2004, 5439 : 32 - 40
  • [26] Two-step wavelet-based estimation for Gaussian mixed fractional processes
    Abry, Patrice
    Didier, Gustavo
    Li, Hui
    STATISTICAL INFERENCE FOR STOCHASTIC PROCESSES, 2019, 22 (02) : 157 - 185
  • [27] Asymptotic properties of wavelet-based estimator in nonparametric regression model with weakly dependent processes
    Zhou, Xing-cai
    Lin, Jin-guan
    Yin, Chang-Ming
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
  • [28] Estimation of Differential Photometry in Adaptive Optics Observations with a Wavelet-based Maximum Likelihood Estimator
    Baena Galle, Roberto
    Gladysz, Szymon
    PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC, 2011, 123 (905) : 865 - 878
  • [29] Asymptotic properties of wavelet-based estimator in nonparametric regression model with weakly dependent processes
    Xing-cai Zhou
    Jin-guan Lin
    Chang-Ming Yin
    Journal of Inequalities and Applications, 2013
  • [30] Two-step wavelet-based estimation for Gaussian mixed fractional processes
    Patrice Abry
    Gustavo Didier
    Hui Li
    Statistical Inference for Stochastic Processes, 2019, 22 : 157 - 185