Adaptive wavelet-based estimator of the memory parameter for stationary Gaussian processes

被引:7
|
作者
Bardet, Jean-Marc [1 ]
Bibi, Hatem [1 ]
Jouini, Abdellatif [2 ]
机构
[1] Univ Paris 01, Samos Matisse CES, CNRS, UMR 8174, F-75013 Paris, France
[2] Fac Sci Tunis, Dept Math, Tunis 1060, Tunisia
关键词
wavelet analysis; long range dependence; memory parameter; semi-parametric estimation; adaptive estimation;
D O I
10.3150/07-BEJ6151
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This work is intended as a contribution to the theory of a wavelet-based adaptive estimator of the memory parameter in the classical semi-parametric framework for Gaussian stationary processes. In particular, we introduce and develop the choice of a data-driven optimal bandwidth. Moreover, we establish a central limit theorem for the estimator of the memory parameter with the minimax rate of convergence (Lip to a logarithm factor). The quality of the estimators is demonstrated via simulations.
引用
收藏
页码:691 / 724
页数:34
相关论文
共 50 条
  • [1] A Note on Wavelet-Based Estimator of the Hurst Parameter
    Wu, Liang
    ENTROPY, 2020, 22 (03)
  • [2] Shrinkage Estimation of the Memory Parameter in Stationary Gaussian Processes
    Nkurunziza, Severien
    Hussein, Abdulkadir
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2015, 44 (08) : 1580 - 1591
  • [3] A wavelet whittle estimator of the memory parameter of a nonstationary Gaussian time series
    Moulines, E.
    Roueff, F.
    Taqqu, M. S.
    ANNALS OF STATISTICS, 2008, 36 (04): : 1925 - 1956
  • [4] Nonlinear wavelet-based estimation to spectral density for stationary non-Gaussian linear processes
    Li, Linyuan
    Zhang, Biao
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2022, 60 : 176 - 204
  • [5] A wavelet-based spectrum for non-stationary processes
    Failla, Giuseppe
    Pappatico, Massimiliano
    Cundari, Giuseppe Alfredo
    MECHANICS RESEARCH COMMUNICATIONS, 2011, 38 (05) : 361 - 367
  • [6] AN EFFICIENT ESTIMATOR FOR LOCALLY STATIONARY GAUSSIAN LONG-MEMORY PROCESSES
    Palma, Wilfredo
    Olea, Ricardo
    ANNALS OF STATISTICS, 2010, 38 (05): : 2958 - 2997
  • [7] A wavelet-based model for forecasting non-stationary processes
    Van Bellegem, S
    Fryzlewicz, P
    von Sachs, R
    GROUP 24 : PHYSICAL AND MATHEMATICAL ASPECTS OF SYMMETRIES, 2003, 173 : 955 - 958
  • [8] Gaussian Stationary Processes: Adaptive Wavelet Decompositions, Discrete Approximations, and Their Convergence
    Gustavo Didier
    Vladas Pipiras
    Journal of Fourier Analysis and Applications, 2008, 14 : 203 - 234
  • [9] Gaussian stationary processes: Adaptive wavelet decompositions, discrete approximations, and their convergence
    Didier, Gustavo
    Pipiras, Vladas
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2008, 14 (02) : 203 - 234
  • [10] A WAVELET-BASED ERROR ESTIMATOR AND AN ADAPTIVE SCHEME FOR PLATE BENDING PROBLEMS
    Li, Bing
    Chen, Xuefeng
    He, Zhengjia
    INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2010, 7 (02) : 241 - 259