DaMiRseq-an R/Bioconductor package for data mining of RNA-Seq data: normalization, feature selection and classification

被引:50
|
作者
Chiesa, Mattia [1 ]
Colombo, Gualtiero I. [1 ]
Piacentini, Luca [1 ]
机构
[1] IRCCS, Immunol & Funct Genom Unit, Ctr Cardiol Monzino, I-20138 Milan, Italy
关键词
D O I
10.1093/bioinformatics/btx795
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
RNA-Seq is becoming the technique of choice for high-throughput transcriptome profiling, which, besides class comparison for differential expression, promises to be an effective and powerful tool for biomarker discovery. However, a systematic analysis of high-dimensional genomic data is a demanding task for such a purpose. DaMiRseq offers an organized, flexible and convenient framework to remove noise and bias, select the most informative features and perform accurate classification.
引用
收藏
页码:1416 / 1418
页数:3
相关论文
共 50 条
  • [31] Evaluating statistical learning methods for cell type classification and feature selection using RNA-seq data
    Chen, Hao
    BMC BIOINFORMATICS, 2014, 15
  • [32] A protocol for RNA methylation differential analysis with MeRIP-Seq data and exomePeak R/Bioconductor package
    Meng, Jia
    Lu, Zhiliang
    Liu, Hui
    Zhang, Lin
    Zhang, Shaowu
    Chen, Yidong
    Rao, Manjeet K.
    Huang, Yufei
    METHODS, 2014, 69 (03) : 274 - 281
  • [33] A graph-based algorithm for RNA-seq data normalization
    Diem-Trang Tran
    Bhaskara, Aditya
    Kuberan, Balagurunathan
    Might, Matthew
    PLOS ONE, 2020, 15 (01):
  • [34] DEGseq: an R package for identifying differentially expressed genes from RNA-seq data
    Wang, Likun
    Feng, Zhixing
    Wang, Xi
    Wang, Xiaowo
    Zhang, Xuegong
    BIOINFORMATICS, 2010, 26 (01) : 136 - 138
  • [35] PathwaySplice: an R package for unbiased pathway analysis of alternative splicing in RNA-Seq data
    Yan, Aimin
    Ban, Yuguang
    Gao, Zhen
    Chen, Xi
    Wang, Lily
    BIOINFORMATICS, 2018, 34 (18) : 3220 - 3222
  • [36] compcodeR-an R package for benchmarking differential expression methods for RNA-seq data
    Soneson, Charlotte
    BIOINFORMATICS, 2014, 30 (17) : 2517 - 2518
  • [37] Classification performance comparison of deep learning and classical data mining methods on RNA-Seq data set
    Kasikci, Merve
    Cosgun, Erdal
    Karabulut, Erdem
    INTERNATIONAL JOURNAL OF DATA MINING AND BIOINFORMATICS, 2021, 26 (3-4) : 188 - 201
  • [38] Feature Selection in Single-Cell RNA-seq Data via a Genetic Algorithm
    Chatzilygeroudis, Konstantinos I.
    Vrahatis, Aristidis G.
    Tasoulis, Sotiris K.
    Vrahatis, Michael N.
    LEARNING AND INTELLIGENT OPTIMIZATION, LION 15, 2021, 12931 : 66 - 79
  • [39] Crafted experiments to evaluate feature selection methods for single cell RNA-seq data
    Liu, Siyao
    Corcoran, David
    Garcia-Recio, Susana
    Perou, Charles
    Marron, J. S.
    CANCER RESEARCH, 2024, 84 (07)
  • [40] Hybrid Causal Feature Selection for Cancer Biomarker Identification From RNA-Seq Data
    Xu, Wenwei
    Zhang, Hao
    Xia, Yewei
    Ren, Yixin
    Guan, Jihong
    Zhou, Shuigeng
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2024, 21 (06) : 1645 - 1655