DaMiRseq-an R/Bioconductor package for data mining of RNA-Seq data: normalization, feature selection and classification

被引:50
作者
Chiesa, Mattia [1 ]
Colombo, Gualtiero I. [1 ]
Piacentini, Luca [1 ]
机构
[1] IRCCS, Immunol & Funct Genom Unit, Ctr Cardiol Monzino, I-20138 Milan, Italy
关键词
D O I
10.1093/bioinformatics/btx795
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
RNA-Seq is becoming the technique of choice for high-throughput transcriptome profiling, which, besides class comparison for differential expression, promises to be an effective and powerful tool for biomarker discovery. However, a systematic analysis of high-dimensional genomic data is a demanding task for such a purpose. DaMiRseq offers an organized, flexible and convenient framework to remove noise and bias, select the most informative features and perform accurate classification.
引用
收藏
页码:1416 / 1418
页数:3
相关论文
共 50 条
  • [21] The Impact of Normalization Methods on RNA-Seq Data Analysis
    Zyprych-Walczak, J.
    Szabelska, A.
    Handschuh, L.
    Gorczak, K.
    Klamecka, K.
    Figlerowicz, M.
    Siatkowski, I.
    BIOMED RESEARCH INTERNATIONAL, 2015, 2015
  • [22] GC-Content Normalization for RNA-Seq Data
    Davide Risso
    Katja Schwartz
    Gavin Sherlock
    Sandrine Dudoit
    BMC Bioinformatics, 12
  • [23] GC-Content Normalization for RNA-Seq Data
    Risso, Davide
    Schwartz, Katja
    Sherlock, Gavin
    Dudoit, Sandrine
    BMC BIOINFORMATICS, 2011, 12
  • [24] Mining RNA-Seq Data for Infections and Contaminations
    Bonfert, Thomas
    Csaba, Gergely
    Zimmer, Ralf
    Friedel, Caroline C.
    PLOS ONE, 2013, 8 (09):
  • [25] ascend: R package for analysis of single-cell RNA-seq data
    Senabouth, Anne
    Lukowski, Samuel W.
    Hernandez, Jose Alquicira
    Andersen, Stacey B.
    Mei, Xin
    Nguyen, Quan H.
    Powell, Joseph E.
    GIGASCIENCE, 2019, 8 (08):
  • [26] Bayesian Hyper-LASSO Classification for Feature Selection with Application to Endometrial Cancer RNA-seq Data
    Lai Jiang
    Celia M. T. Greenwood
    Weixin Yao
    Longhai Li
    Scientific Reports, 10
  • [27] Evaluating statistical learning methods for cell type classification and feature selection using RNA-seq data
    Hao Chen
    BMC Bioinformatics, 15 (Suppl 10)
  • [28] Bayesian Hyper-LASSO Classification for Feature Selection with Application to Endometrial Cancer RNA-seq Data
    Jiang, Lai
    Greenwood, Celia M. T.
    Yao, Weixin
    Li, Longhai
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [29] Evaluating statistical learning methods for cell type classification and feature selection using RNA-seq data
    Chen, Hao
    BMC BIOINFORMATICS, 2014, 15
  • [30] SeqGSEA: a Bioconductor package for gene set enrichment analysis of RNA-Seq data integrating differential expression and splicing
    Wang, Xi
    Cairns, Murray J.
    BIOINFORMATICS, 2014, 30 (12) : 1777 - 1779