Remaining Useful Life Prediction and State of Health Diagnosis for Lithium-Ion Batteries Using Particle Filter and Support Vector Regression

被引:515
作者
Wei, Jingwen [1 ]
Dong, Guangzhong [1 ]
Chen, Zonghai [1 ]
机构
[1] Univ Sci & Technol China, Dept Automat, Hefei 230026, Anhui, Peoples R China
关键词
Energy storage; health monitoring; state estimation; support vector regression (SVR); ELECTRIC VEHICLES; NEURAL-NETWORKS; OF-CHARGE; PROGNOSTICS; MANAGEMENT; SYSTEMS; CELLS; MODEL;
D O I
10.1109/TIE.2017.2782224
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Accurate remaining useful life (RUL) prediction and state-of-health (SOH) diagnosis are of extreme importance for safety, durability, and cost of energy storage systems based on lithium-ion batteries. It is also a crucial challenge for energy storage systems to predict RUL and diagnose SOH of batteries due to the complicated aging mechanism. In this paper, a novel method for battery RUL prediction and SOH estimation is proposed. First, a novel support vector regression-based battery SOH state-space model is established to simulate the battery aging mechanism, which takes the capacity as the state variable and takes the representative features during a constant-current and constant-voltage protocol as the input variables. The estimated impedance variables are taken as the output due to the correlation between battery capacity and the sum of charge transfer resistance and electrolyte resistance. Second, in order to suppress the measurement noises of current and voltage, a particle filter is employed to estimate the impedance degradation parameters. Furthermore, experiments are conducted to validate the proposed method. The results show that the proposed SOH estimation method can provide an accurate and robustness result. The proposed RUL prediction framework can also ensure an accurate RUL prediction result.
引用
收藏
页码:5634 / 5643
页数:10
相关论文
共 31 条
[1]   Advanced mathematical methods of SOC and SOH estimation for lithium-ion batteries [J].
Andre, Dave ;
Appel, Christian ;
Soczka-Guth, Thomas ;
Sauer, Dirk Uwe .
JOURNAL OF POWER SOURCES, 2013, 224 :20-27
[2]   Support vector machines for nonlinear state space reconstruction: Application to the Great Salt Lake time series [J].
Asefa, T ;
Kemblowski, M ;
Lall, U ;
Urroz, G .
WATER RESOURCES RESEARCH, 2005, 41 (12) :1-10
[3]   Lyapunov-Based Adaptive State of Charge and State of Health Estimation for Lithium-Ion Batteries [J].
Chaoui, Hicham ;
Golbon, Navid ;
Hmouz, Imad ;
Souissi, Ridha ;
Tahar, Sofiene .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2015, 62 (03) :1610-1618
[4]   State-of-Charge Estimation for Lithium-Ion Batteries Using Neural Networks and EKF [J].
Charkhgard, Mohammad ;
Farrokhi, Mohammad .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2010, 57 (12) :4178-4187
[5]   Kalman filter for onboard state of charge estimation and peak power capability analysis of lithium-ion batteries [J].
Dong, Guangzhong ;
Wei, Jingwen ;
Chen, Zonghai .
JOURNAL OF POWER SOURCES, 2016, 328 :615-626
[6]   A method for state of energy estimation of lithium-ion batteries based on neural network model [J].
Dong, Guangzhong ;
Zhang, Xu ;
Zhang, Chenbin ;
Chen, Zonghai .
ENERGY, 2015, 90 :879-888
[7]   Lithium-ion battery state of health monitoring and remaining useful life prediction based on support vector regression-particle filter [J].
Dong, Hancheng ;
Jin, Xiaoning ;
Lou, Yangbing ;
Wang, Changhong .
JOURNAL OF POWER SOURCES, 2014, 271 :114-123
[8]   Determination of lithium-ion battery state-of-health based on constant-voltage charge phase [J].
Eddahech, Akram ;
Briat, Olivier ;
Vinassa, Jean-Michel .
JOURNAL OF POWER SOURCES, 2014, 258 :218-227
[9]   State-of-Charge and State-of-Health Lithium-Ion Batteries' Diagnosis According to Surface Temperature Variation [J].
El Mejdoubi, Asmae ;
Oukaour, Amrane ;
Chaoui, Hicham ;
Gualous, Hamid ;
Sabor, Jalal ;
Slamani, Youssef .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2016, 63 (04) :2391-2402
[10]   Prognostics in battery health management [J].
Goebel, Kai ;
Saha, Bhaskar ;
Saxena, Abhinav ;
Celaya, Jose R. ;
Christophersen, Jon P. .
IEEE INSTRUMENTATION & MEASUREMENT MAGAZINE, 2008, 11 (04) :33-40