Data errors and an error estimation for ill-posed problems

被引:40
作者
Yagola, AG [1 ]
Leonov, AS
Titarenkoa, VN
机构
[1] Moscow MV Lomonosov State Univ, Fac Phys, Dept Math, Moscow 119899, Russia
[2] Moscow Engn Phys Inst, Dept Math, Moscow 115409, Russia
来源
INVERSE PROBLEMS IN ENGINEERING | 2002年 / 10卷 / 02期
基金
俄罗斯基础研究基金会;
关键词
inverse problems; ill-posed problems; regularization; sourcewise representation;
D O I
10.1080/10682760290031195
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper we shall discuss the problem how to use a priori information for constructing regularizing algorithms and error estimation while solving ill-posed problems. We shall consider the following types of a priori information: (1) a compactness of a set of solutions; (2) a sourcewise representation of a solution with a compact operator.
引用
收藏
页码:117 / 129
页数:13
相关论文
共 20 条
[1]  
[Anonymous], SOVIET MATH DOKLADY
[2]  
Bakushinskii A.B., 1994, ILL POSED PROBLEMS T
[3]  
CHEREPASCHUK AM, 1997, ASTROPHYSICS SPACE S, V254, P111
[4]  
Hadamard J., 1953, Lectures on Cauchy's problem in linear partial differential equations
[5]   NUMERICAL TOOLS FOR ANALYSIS AND SOLUTION OF FREDHOLM INTEGRAL-EQUATIONS OF THE 1ST KIND [J].
HANSEN, PC .
INVERSE PROBLEMS, 1992, 8 (06) :849-872
[6]  
Ivanov V. K., 1978, THEORY LINEAR ILL PO
[7]  
Leonov A., 1997, Moscow Univ. Phys. Bull, V52, P20
[8]   Special regularizing methods for ill-posed problems with sourcewise represented solutions [J].
Leonov, AS ;
Yagola, AG .
INVERSE PROBLEMS, 1998, 14 (06) :1539-1550
[9]  
LEONOV AS, 1995, MOSCOW U PHYSICS B, V50, P25
[10]  
Tikhonov A., 1998, Nonlinear ill-posed problems