Swept-frequency feedback interferometry using terahertz frequency QCLs: a method for imaging and materials analysis

被引:95
作者
Rakic, Aleksandar D. [1 ]
Taimre, Thomas [2 ]
Bertling, Karl [1 ]
Lim, Yah Leng [1 ]
Dean, Paul [3 ]
Indjin, Dragan [3 ]
Ikonic, Zoran [3 ]
Harrison, Paul [3 ]
Valavanis, Alexander [3 ]
Khanna, Suraj P. [3 ]
Lachab, Mohammad [3 ]
Wilson, Stephen J. [1 ]
Linfield, Edmund H. [3 ]
Davies, A. Giles [3 ]
机构
[1] Univ Queensland, Sch Informat Technol & Elect Engn, St Lucia, Qld 4072, Australia
[2] Univ Queensland, Sch Math & Phys, St Lucia, Qld 4072, Australia
[3] Univ Leeds, Sch Elect & Elect Engn, Leeds LS2 9JT, W Yorkshire, England
基金
英国工程与自然科学研究理事会; 澳大利亚研究理事会;
关键词
QUANTUM-CASCADE LASERS; SPECTROSCOPY; EXPLOSIVES; THZ; LOCKING;
D O I
10.1364/OE.21.022194
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The terahertz (THz) frequency quantum cascade laser (QCL) is a compact source of high-power radiation with a narrow intrinsic linewidth. As such, THz QCLs are extremely promising sources for applications including high-resolution spectroscopy, heterodyne detection, and coherent imaging. We exploit the remarkable phase-stability of THz QCLs to create a coherent swept-frequency delayed self-homodyning method for both imaging and materials analysis, using laser feedback interferometry. Using our scheme we obtain amplitude-like and phase-like images with minimal signal processing. We determine the physical relationship between the operating parameters of the laser under feedback and the complex refractive index of the target and demonstrate that this coherent detection method enables extraction of complex refractive indices with high accuracy. This establishes an ultimately compact and easy-to-implement THz imaging and materials analysis system, in which the local oscillator, mixer, and detector are all combined into a single laser. (c) 2013 Optical Society of America
引用
收藏
页码:22194 / 22205
页数:12
相关论文
共 50 条
[1]   2.9 THz quantum cascade lasers operating up to 70 K in continuous wave [J].
Barbieri, S ;
Alton, J ;
Beere, HE ;
Fowler, J ;
Linfield, EH ;
Ritchie, DA .
APPLIED PHYSICS LETTERS, 2004, 85 (10) :1674-1676
[2]  
Barbieri S, 2011, NAT PHOTONICS, V5, P306, DOI [10.1038/NPHOTON.2011.49, 10.1038/nphoton.2011.49]
[3]  
Barbieri S, 2010, NAT PHOTONICS, V4, P636, DOI [10.1038/nphoton.2010.125, 10.1038/NPHOTON.2010.125]
[4]  
Bosckea T. S., 2006, ENCY SENSORS, P1
[5]  
Bryant G., 1993, PRINCIPLES MICROWAVE
[6]   Imaging with terahertz radiation [J].
Chan, Wai Lam ;
Deibel, Jason ;
Mittleman, Daniel M. .
REPORTS ON PROGRESS IN PHYSICS, 2007, 70 (08) :1325-1379
[7]   Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials [J].
Cunningham, Paul D. ;
Valdes, Nestor N. ;
Vallejo, Felipe A. ;
Hayden, L. Michael ;
Polishak, Brent ;
Zhou, Xing-Hua ;
Luo, Jingdong ;
Jen, Alex K. -Y. ;
Williams, Jarrod C. ;
Twieg, Robert J. .
JOURNAL OF APPLIED PHYSICS, 2011, 109 (04)
[8]   Terahertz inverse synthetic aperture radar (ISAR) imaging with a quantum cascade laser transmitter [J].
Danylov, Andriy A. ;
Goyette, Thomas M. ;
Waldman, Jerry ;
Coulombe, Michael J. ;
Gatesman, Andrew J. ;
Giles, Robert H. ;
Qian, Xifeng ;
Chandrayan, Neelima ;
Vangala, Shivashankar ;
Termkoa, Krongtip ;
Goodhue, William D. ;
Nixon, William E. .
OPTICS EXPRESS, 2010, 18 (15) :16264-16272
[9]   Imaging with a Terahertz quantum cascade laser [J].
Darmo, J ;
Tamosiunas, V ;
Fasching, G ;
Kröll, J ;
Unterrainer, K ;
Beck, M ;
Giovannini, M ;
Faist, J ;
Kremser, C ;
Debbage, P .
OPTICS EXPRESS, 2004, 12 (09) :1879-1884
[10]   Terahertz spectroscopy of explosives and drugs [J].
Davies, A. Giles ;
Burnett, Andrew D. ;
Fan, Wenhui ;
Linfield, Edmund H. ;
Cunningham, John E. .
MATERIALS TODAY, 2008, 11 (03) :18-26