Adaptive real-time dual-comb spectroscopy

被引:343
作者
Ideguchi, Takuro [1 ]
Poisson, Antonin [2 ]
Guelachvili, Guy [2 ]
Picque, Nathalie [1 ,2 ,3 ]
Hansch, Theodor W. [1 ,3 ]
机构
[1] Max Planck Inst Quantum Opt, Laser Spect Div, D-85748 Garching, Germany
[2] Univ Paris Sud, CNRS, Inst Sci Mol Orsay, F-91405 Orsay, France
[3] Univ Munich, Fak Phys, D-80799 Munich, Germany
基金
欧洲研究理事会;
关键词
HIGH-RESOLUTION; MU-M; FREQUENCY; RANGE;
D O I
10.1038/ncomms4375
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The spectrum of a laser frequency comb consists of several hundred thousand equally spaced lines over a broad spectral bandwidth. Such frequency combs have revolutionized optical frequency metrology and they now hold much promise for significant advances in a growing number of applications including molecular spectroscopy. Despite an intriguing potential for the measurement of molecular spectra spanning tens of nanometres within tens of microseconds at Doppler-limited resolution, the development of dual-comb spectroscopy is hindered by the demanding stability requirements of the laser combs. Here we overcome this difficulty and experimentally demonstrate a concept of real-time dual-comb spectroscopy, which compensates for laser instabilities by electronic signal processing. It only uses free-running mode-locked lasers without any phase-lock electronics. We record spectra spanning the full bandwidth of near-infrared fibre lasers with Doppler-limited line profiles highly suitable for measurements of concentrations or line intensities. Our new technique of adaptive dual-comb spectroscopy offers a powerful transdisciplinary instrument for analytical sciences.
引用
收藏
页数:8
相关论文
共 39 条
[1]   Cavity-Enhanced Direct Frequency Comb Spectroscopy: Technology and Applications [J].
Adler, Florian ;
Thorpe, Michael J. ;
Cossel, Kevin C. ;
Ye, Jun .
ANNUAL REVIEW OF ANALYTICAL CHEMISTRY, VOL 3, 2010, 3 :175-205
[2]   Spectroscopy of the methane ν3 band with an accurate midinfrared coherent dual-comb spectrometer [J].
Baumann, E. ;
Giorgetta, F. R. ;
Swann, W. C. ;
Zolot, A. M. ;
Coddington, I. ;
Newbury, N. R. .
PHYSICAL REVIEW A, 2011, 84 (06)
[3]   Mid-infrared dual-comb spectroscopy with 2.4 μm Cr2+:ZnSe femtosecond lasers [J].
Bernhardt, B. ;
Sorokin, E. ;
Jacquet, P. ;
Thon, R. ;
Becker, T. ;
Sorokina, I. T. ;
Picque, N. ;
Haensch, T. W. .
APPLIED PHYSICS B-LASERS AND OPTICS, 2010, 100 (01) :3-8
[4]   Cavity-enhanced dual-comb spectroscopy [J].
Bernhardt, Birgitta ;
Ozawa, Akira ;
Jacquet, Patrick ;
Jacquey, Marion ;
Kobayashi, Yohei ;
Udem, Thomas ;
Holzwarth, Ronald ;
Guelachvili, Guy ;
Haensch, Theodor W. ;
Picque, Nathalie .
NATURE PHOTONICS, 2010, 4 (01) :55-57
[5]   Coherent dual-comb spectroscopy at high signal-to-noise ratio [J].
Coddington, I. ;
Swann, W. C. ;
Newbury, N. R. .
PHYSICAL REVIEW A, 2010, 82 (04)
[6]   Coherent multiheterodyne spectroscopy using stabilized optical frequency combs [J].
Coddington, Ian ;
Swann, William C. ;
Newbury, Nathan R. .
PHYSICAL REVIEW LETTERS, 2008, 100 (01)
[7]  
Connes J., 1970, Nouvelle Revue d'Optique Appliquee, V1, P3, DOI 10.1088/0029-4780/1/1/301
[8]  
de Oliveira N, 2011, NAT PHOTONICS, V5, P149, DOI [10.1038/nphoton.2010.314, 10.1038/NPHOTON.2010.314]
[9]   Optical referencing technique with CW lasers as intermediate oscillators for continuous full delay range frequency comb interferometry [J].
Deschenes, Jean-Daniel ;
Giaccari, Philippe ;
Genest, Jerome .
OPTICS EXPRESS, 2010, 18 (22) :23358-23370
[10]  
Diddams SA, 2005, FEMTOSECOND OPTICAL FREQUENCY COMB TECHNOLOGY: PRINCIPLE, OPERATION, AND APPLICATIONS, P225, DOI 10.1007/0-387-23791-7_9