Annual distributions and sources of Arctic aerosol components, aerosol optical depth, and aerosol absorption

被引:78
作者
Breider, Thomas J. [1 ]
Mickley, Loretta J. [1 ]
Jacob, Daniel J. [1 ]
Wang, Qiaoqiao [1 ]
Fisher, Jenny A. [2 ]
Chang, Rachel. Y. -W. [3 ]
Alexander, Becky [4 ]
机构
[1] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[2] Univ Wollongong, Sch Chem, Wollongong, NSW, Australia
[3] Harvard Univ, Dept Earth & Planetary Sci, Cambridge, MA 02138 USA
[4] Univ Washington, Dept Atmospher Sci, Seattle, WA 98195 USA
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
LONG-RANGE TRANSPORT; BLACK CARBON; CHEMICAL-COMPOSITION; PARTICLE CONCENTRATION; TROPOSPHERIC OZONE; ABSORBING AEROSOL; CLIMATE RESPONSE; SULFUR-DIOXIDE; DRY DEPOSITION; NORTH-AMERICA;
D O I
10.1002/2013JD020996
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Radiative forcing by aerosols and tropospheric ozone could play a significant role in recent Arctic warming. These species are in general poorly accounted for in climate models. We use the GEOS-Chem global chemical transport model to construct a 3-D representation of Arctic aerosols and ozone that is consistent with observations and can be used in climate simulations. We focus on 2008, when extensive observations were made from different platforms as part of the International Polar Year. Comparison to aircraft, surface, and ship cruise observations suggests that GEOS-Chem provides in general a successful year-round simulation of Arctic black carbon (BC), organic carbon (OC), sulfate, and dust aerosol. BC has major fuel combustion and boreal fire sources, OC is mainly from fires, sulfate has a mix of anthropogenic and natural sources, and dust is mostly from the Sahara. The model is successful in simulating aerosol optical depth (AOD) observations from Aerosol Robotics Network stations in the Arctic; the sharp drop from spring to summer appears driven in part by the smaller size of sulfate aerosol in summer. The anthropogenic contribution to Arctic AOD is a factor of 4 larger in spring than in summer and is mainly sulfate. Simulation of absorbing aerosol optical depth (AAOD) indicates that non-BC aerosol (OC and dust) contributed 24% of Arctic AAOD at 550 nm and 37% of absorbing mass deposited to the snow pack in 2008. Open fires contributed half of AAOD at 550 nm and half of deposition to the snowpack. © 2014. American Geophysical Union. All Rights Reserved.
引用
收藏
页码:4107 / 4124
页数:18
相关论文
共 104 条
[1]   Sulfate formation in sea-salt aerosols: Constraints from oxygen isotopes [J].
Alexander, B ;
Park, RJ ;
Jacob, DJ ;
Li, QB ;
Yantosca, RM ;
Savarino, J ;
Lee, CCW ;
Thiemens, MH .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2005, 110 (D10) :1-12
[2]   Isotopic constraints on the formation pathways of sulfate aerosol in the marine boundary layer of the subtropical northeast Atlantic Ocean [J].
Alexander, B. ;
Allman, D. J. ;
Amos, H. M. ;
Fairlie, T. D. ;
Dachs, J. ;
Hegg, Dean A. ;
Sletten, Ronald S. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2012, 117
[3]   Transition metal-catalyzed oxidation of atmospheric sulfur: Global implications for the sulfur budget [J].
Alexander, Becky ;
Park, Rokjin J. ;
Jacob, Daniel J. ;
Gong, Sunling .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2009, 114
[4]   Quantitative sampling using an Aerodyne aerosol mass spectrometer - 1. Techniques of data interpretation and error analysis [J].
Allan, JD ;
Jimenez, JL ;
Williams, PI ;
Alfarra, MR ;
Bower, KN ;
Jayne, JT ;
Coe, H ;
Worsnop, DR .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2003, 108 (D3)
[5]   Nitrogen oxides and PAN in plumes from boreal fires during ARCTAS-B and their impact on ozone: an integrated analysis of aircraft and satellite observations [J].
Alvarado, M. J. ;
Logan, J. A. ;
Mao, J. ;
Apel, E. ;
Riemer, D. ;
Blake, D. ;
Cohen, R. C. ;
Min, K-E ;
Perring, A. E. ;
Browne, E. C. ;
Wooldridge, P. J. ;
Diskin, G. S. ;
Sachse, G. W. ;
Fuelberg, H. ;
Sessions, W. R. ;
Harrigan, D. L. ;
Huey, G. ;
Liao, J. ;
Case-Hanks, A. ;
Jimenez, J. L. ;
Cubison, M. J. ;
Vay, S. A. ;
Weinheimer, A. J. ;
Knapp, D. J. ;
Montzka, D. D. ;
Flocke, F. M. ;
Pollack, I. B. ;
Wennberg, P. O. ;
Kurten, A. ;
Crounse, J. ;
St Clair, J. M. ;
Wisthaler, A. ;
Mikoviny, T. ;
Yantosca, R. M. ;
Carouge, C. C. ;
Le Sager, P. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2010, 10 (20) :9739-9760
[6]  
[Anonymous], 2006, ATMOS CHEM PHYS
[7]   Long-range transport of Saharan dust to northern Europe:: The 11-16 October 2001 outbreak observed with EARLINET -: art. no. 4783 [J].
Ansmann, A ;
Bösenberg, J ;
Chaikovsky, A ;
Comerón, A ;
Eckhardt, S ;
Eixmann, R ;
Freudenthaler, V ;
Ginoux, P ;
Komguem, L ;
Linnè, H ;
Márquez, MAL ;
Matthias, V ;
Mattis, I ;
Mitev, V ;
Müller, D ;
Music, S ;
Nickovic, S ;
Pelon, J ;
Sauvage, L ;
Sobolewsky, P ;
Srivastava, MK ;
Stohl, A ;
Torres, O ;
Vaughan, G ;
Wandinger, U ;
Wiegner, M .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2003, 108 (D24)
[8]   Dimethyl sulfide and dimethyl sulfoxide and their oxidation in the atmosphere [J].
Barnes, I ;
Hjorth, J ;
Mihalopoulos, N .
CHEMICAL REVIEWS, 2006, 106 (03) :940-975
[9]   AEROSOL LIGHT-SCATTERING AND CONDENSATION NUCLEI MEASUREMENTS AT BARROW, ALASKA [J].
BODHAINE, BA ;
HARRIS, JM ;
HERBERT, GA .
ATMOSPHERIC ENVIRONMENT, 1981, 15 (08) :1375-1389
[10]   Historical emissions of black and organic carbon aerosol from energy-related combustion, 1850-2000 [J].
Bond, Tami C. ;
Bhardwaj, Ekta ;
Dong, Rong ;
Jogani, Rahil ;
Jung, Soonkyu ;
Roden, Christoph ;
Streets, David G. ;
Trautmann, Nina M. .
GLOBAL BIOGEOCHEMICAL CYCLES, 2007, 21 (02)