Non-linear Yang-Mills instantons from strings are π-stable D-branes

被引:9
作者
Enger, H [1 ]
Lütken, CA [1 ]
机构
[1] Univ Oslo, Dept Phys, Theory Grp, N0-0316 Oslo, Norway
关键词
D-branes; Pi-stability; gauge theory; instantons;
D O I
10.1016/j.nuclphysb.2004.06.051
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We show that B-type Pi-stable D-branes do not in general reduce to the (Gieseker-) stable holomorphic vector bundles used in mathematics to construct moduli spaces. We show that solutions of the almost Hermitian Yang-Mills equations for the non-linear deformations of Yang-Mills instantons that appear in the low-energy geometric limit of strings exist if they are pi-stable, a geometric large volume version of Pi-stability. This shows that pi-stability is the correct physical stability concept. We speculate that this string-canonical choice of stable objects, which is encoded in and derived from the central charge of the string-algebra, should find applications to algebraic geometry where there is no canonical choice of stable geometrical objects. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:73 / 83
页数:11
相关论文
共 20 条
  • [1] [Anonymous], 1978, Principles of algebraic geometry
  • [2] FIVEBRANES, MEMBRANES AND NONPERTURBATIVE STRING THEORY
    BECKER, K
    BECKER, M
    STROMINGER, A
    [J]. NUCLEAR PHYSICS B, 1995, 456 (1-2) : 130 - 152
  • [3] D-branes and bundles on elliptic fibrations
    Diaconescu, DE
    Römelsberger, C
    [J]. NUCLEAR PHYSICS B, 2000, 574 (1-2) : 245 - 262
  • [4] DONALDSON SK, 1985, P LOND MATH SOC, V50, P1
  • [5] DOUGLAS MR, HEPTH0003263
  • [6] DOUGLAS MR, MATHAG0009209
  • [7] DOUGLAS MR, HEPTH002037
  • [8] Freed D.S., HEPTH9907189
  • [9] Friedman R., 1998, UNIVERSITEX, DOI 10.1007/978-1-4612-1688-9
  • [10] Hartshorne R., 1977, ALGEBRAIC GEOMETRY