An inhomogeneous Jarnik theorem

被引:15
作者
Bugeaud, Y [1 ]
机构
[1] Univ Strasbourg, UFR Math, F-67084 Strasbourg, France
来源
JOURNAL D ANALYSE MATHEMATIQUE | 2004年 / 92卷 / 1期
关键词
D O I
10.1007/BF02787766
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We compute the generalized Hausdorff measure of sets of points in R-s which satisfy an inhomogeneous system of Diophantine inequalities infinitely often. This provides an inhomogeneous analogue of a classical result of Jarnik on simultaneous Diophantine approximation.
引用
收藏
页码:327 / 349
页数:23
相关论文
共 26 条
[1]  
BAKER A, 1970, P LOND MATH SOC, V21, P1
[2]   Sets of exact 'logarithmic' order in the theory of Diophantine approximation [J].
Beresnevich, V ;
Dickinson, D ;
Velani, S .
MATHEMATISCHE ANNALEN, 2001, 321 (02) :253-273
[3]  
Beresnevich V, 1999, ACTA ARITH, V90, P97
[4]  
Beresnevich VV, 2002, PANORAMA IN NUMBER THEORY OR THE VIEW FROM BAKER'S GARDEN, P260
[5]  
Bernik V.I., 1999, METRIC DIOPHANTINE A
[6]  
BERSNEVICH V, 2000, PHYS MAT SER, V1
[7]  
Besicovitch A., 1934, J LOND MATH SOC, V9, P126
[8]   A note on inhomogeneous diophantine approximation [J].
Bugeaud, Y .
GLASGOW MATHEMATICAL JOURNAL, 2003, 45 :105-110
[9]   Approximation by algebraic integers and Hausdorff dimension [J].
Bugeaud, Y .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2002, 65 :547-559
[10]   Approximation by algebraic numbers of fixed degree and Ausdorf dimension [J].
Bugeaud, Y .
JOURNAL OF NUMBER THEORY, 2002, 96 (01) :174-200