On the Diophantine equation X4

被引:0
作者
Alavi, S. D. [1 ]
Janfada, A. S. [1 ]
Abbaspour, A. [1 ]
机构
[1] Urmia Univ, Dept Math, Orumiyeh 5756151818, Iran
来源
ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS | 2019年 / 42期
关键词
diophantine equation; elliptic curve;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
First we prove that, under a certain condition, the Diophantine equation X-4 + hY(3) = Z(4) + hW(3), where h is a rational number, has infinitely many nontrivial integral solutions. Using this result we deduce that, under a condition, for k >= 2, the Diophantine equation X-4+Y-1(3) +Y-2(3) + . . . +Y-k(3) = Z(4)+W-1(3) +W-2(3) + . . . +W-k(3) has infinitely many nontrivial integral solutions. Then, we conjecture, by some evidences, that the above conditions may be removed.
引用
收藏
页码:324 / 329
页数:6
相关论文
共 10 条
[1]  
[Anonymous], 2008, ELLIPTIC CURVES NUMB, DOI DOI 10.1201/9781420071474
[2]   Symmetric diophantine equations [J].
Choudhry, A .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2004, 34 (04) :1281-1298
[3]  
Choudhry A, 1995, INDIAN J PURE AP MAT, V26, P1057
[4]  
DICKSON L. E., 2005, History of the Theory of Numbers, Vol. II: Diophantine Analysis, VII, DOI DOI 10.1007/BF01705606
[5]  
Hardy Godfrey H., 2008, An Introduction to the Theory of Numbers, Vsixth
[6]  
Janfada A. S., 2015, INT J PURE APPL MATH, V105, P709
[7]  
MacLeod A. J., 2014, ARXIV14101662V1
[8]  
Oppenheim A., 1964, ACTA ARITH, V9, P221
[9]  
Silverman J, 1992, Undergraduate Texts inMathematics
[10]  
Silverman J.H., 1986, The Arithmetic of Elliptic Curves