D'Alembert's functional equation on topological monoids

被引:0
|
作者
Davison, Thomas M. K. [1 ]
机构
[1] McMaster Univ, Dept Math & Stat, Hamilton, ON L8S 4K1, Canada
来源
PUBLICATIONES MATHEMATICAE-DEBRECEN | 2009年 / 75卷 / 1-2期
关键词
d'Alembert's functional equation; Wilson functions; special linear group; unitary group;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that if f is a continuous complex-valued function on the topological monoid M with neutral element e satisfying the functional equation f (xyz) + f (xzy) = 2f(x)f(yz) + 2f(y)f(zx) + 2f(z)f(xy) - 4f(x)f(y)f(z) and f(e) = 1, then there is a continuous homomorphism h : M -> Mat(2)(C), the multiplicative monoid of complex 2 x 2 matrices such that f = 1/2tr o h. As a consequence we prove that if f is a continuous function on the topological group G satisfying f(xy) + f(xy(-1)) = 2f(x)f(y) and f(e) = 1 then there is a continuous homomorphism h : G -> SL(2)(C) such that f = 1/2tr o h,
引用
收藏
页码:41 / 66
页数:26
相关论文
共 50 条