Overcoming the Voc limitation of CZTSe solar cells

被引:0
作者
Risch, L. [1 ,2 ]
Vauche, L. [1 ,2 ]
Redinger, A. [3 ]
Dimitrievska, M. [4 ]
Sanchez, Y. [4 ]
Saucedo, E. [4 ]
Unold, T. [3 ]
Goislard, T. [1 ]
Ruiz, C. M. [2 ]
Escoubas, L. [2 ]
Simon, J. J. [2 ]
机构
[1] NEXCIS, Rousset, France
[2] Aix Marseille Univ, IM2NP, CNRS, UMR 7334, Marseille, France
[3] Helmholtz Zentrum Berlin Mat & Energie, Berlin, Germany
[4] IREC, Catalonia Inst Energy Res, Barcelona, Spain
来源
2016 IEEE 43RD PHOTOVOLTAIC SPECIALISTS CONFERENCE (PVSC) | 2016年
关键词
kesterite solar cells; CZTSe; V-oc deficit; secondary phases; defects; bandgap fluctuations; SECONDARY PHASES; IMPACT;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The V-oc deficit issue is considered to be the most significant limitation of high-performance kesterite devices [ 1]. Secondary phases, defects, band tailing and interface recombination at the kesterite/CdS heterojunction are possible reasons for the low Voc. Raman spectroscopy and PL imaging are applied here for the detection of these phenomena. Their impact on Voc and the efficiency of CZTSe devices is investigated. Process steps are optimized so as to limit their negative influence. Control of secondary phase removal and optimization of the CZTSe/CdS interface lead to significant Voc enhancement. CZTSe devices with 466 mV open circuit voltage and 8.2% power conversion efficiency are achieved. An even higher Voc of 490 mV is obtained for a 4.5% CZTSe/In2S3 device.
引用
收藏
页码:188 / 192
页数:5
相关论文
共 50 条
  • [1] CZTSe solar cells developed on polymer substrates: Effects of low-temperature processing
    Becerril-Romero, Ignacio
    Acebo, Laura
    Oliva, Florian
    Izquierdo-Roca, Victor
    Lopez-Marino, Simon
    Espindola-Rodriguez, Moises
    Neuschitzer, Markus
    Sanchez, Yudania
    Placidi, Marcel
    Perez-Rodriguez, Alejandro
    Saucedo, Edgardo
    Pistor, Paul
    PROGRESS IN PHOTOVOLTAICS, 2018, 26 (01): : 55 - 68
  • [2] Room-Temperature Surface Sulfurization for High-Performance Kesterite CZTSe Solar Cells
    Wang, Siyu
    Gao, Shoushuai
    Wang, Dongxiao
    Jiang, Zhenwu
    Ao, Jianping
    Zhou, Zhiqiang
    Liu, Shengzhong
    Sun, Yun
    Zhang, Yi
    SOLAR RRL, 2019, 3 (01)
  • [3] A direct measurement of higher photovoltage at grain boundaries in CdS/ CZTSe solar cells using KPFM technique
    Vishwakarma, Manoj
    Varandani, Deepak
    Andres, Christian
    Romanyuk, Yaroslav E.
    Haass, Stefan G.
    Tiwari, Ayodhya N.
    Mehta, Bodh R.
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2018, 183 : 34 - 40
  • [4] Li2S doping into CZTSe drives the large improvement of VOC of solar cell
    Shen, Zhan
    Wang, Siyu
    Liu, Yue
    Sun, Yali
    Wu, Jianyu
    Guo, Hongling
    Zhang, Kaizhi
    Zhang, Shengli
    Liu, Fangfang
    Zhang, Yi
    JOURNAL OF ENERGY CHEMISTRY, 2021, 62 : 637 - 644
  • [5] Surface preparation for 10% efficient CZTSe solar cells
    Grenet, Louis
    Emieux, Fabrice
    Choubrac, Leo
    Marquez, Jose A.
    De Vito, Eric
    Roux, Frederic
    Unold, Thomas
    PROGRESS IN PHOTOVOLTAICS, 2021, 29 (02): : 188 - 199
  • [6] Design of Highly Efficient CZTS/CZTSe Tandem Solar Cells
    Samaneh Amiri
    Sajjad Dehghani
    Journal of Electronic Materials, 2020, 49 : 2164 - 2172
  • [7] Design of CZTS/CZTSe tandem solar cells with enhanced performance
    Khadir, Abdelkader
    Lahoual, Mohamed
    Abdelhafidi, Mohamed Kamel
    Sengouga, Noureddine
    MATERIALS TODAY COMMUNICATIONS, 2023, 37
  • [8] Design of Highly Efficient CZTS/CZTSe Tandem Solar Cells
    Amiri, Samaneh
    Dehghani, Sajjad
    JOURNAL OF ELECTRONIC MATERIALS, 2020, 49 (03) : 2164 - 2172
  • [9] Voc deficit in kesterite solar cells
    Gong, Yuancai
    Xin, Hao
    Ding, Liming
    JOURNAL OF SEMICONDUCTORS, 2021, 42 (10)
  • [10] Properties of the Window Layers for the CZTSe and CZTS Based Solar Cells
    Opanasyuk, A. S.
    Kurbatov, D. I.
    Ivashchenko, M. M.
    Protsenko, I. Yu.
    Cheong, H.
    JOURNAL OF NANO- AND ELECTRONIC PHYSICS, 2012, 4 (01)