Gas-assisted electron-beam-induced nanopatterning of high-quality titanium oxide

被引:6
|
作者
Riazanova, A. V. [1 ]
Costanzi, B. N. [2 ]
Aristov, A. I. [3 ,4 ]
Rikers, Y. G. M. [4 ]
Mulders, J. J. L. [5 ]
Kabashin, A. V. [3 ]
Dahlberg, E. Dan [2 ]
Belova, L. M. [1 ,5 ]
机构
[1] Royal Inst Technology KTH, Dept Mat Sci & Engn, Brinellvagen 23, SE-10044 Stockholm, Sweden
[2] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA
[3] Aix Marseille Univ, CNRS, UMR 7341, LP3, Campus Luminy Case 917, F-13288 Marseille 9, France
[4] Inst Pasteur, Unite Imagerie & Modelisat, Computat Imaging & Modeling Unit, Dept Biol Cellulaire & Infect,CNRS,UMR 3691, 25-28 Rue Docteur Roux, F-75015 Paris, France
[5] FEI Electron Opt, Achtseweg Noord 5, NL-5600 KA Eindhoven, Netherlands
基金
瑞典研究理事会;
关键词
gas-assisted EBID; 3D nanopatterning; high-purity insulator; titanium tetra-isopropoxide (TTIP); purification; CHEMICAL-VAPOR-DEPOSITION; ATOMIC LAYER DEPOSITION; TIO2; THIN-FILMS; CARBON NANOTUBES; DIOXIDE; TEMPERATURE; CRYSTALLINE; GROWTH; NANOSTRUCTURES; FABRICATION;
D O I
10.1088/0957-4484/27/11/115304
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Electron-beam-induced deposition of titanium oxide nanopatterns is described. The precursor is titanium tetra-isopropoxide, delivered to the deposition point through a needle and mixed with oxygen at the same point via a flow through a separate needle. The depositions are free of residual carbon and have an EDX determined stoichiometry of TiO2.2. High resolution transmission electron microscopy and Raman spectroscopy studies reveal an amorphous structure of the fabricated titanium oxide. Ellipsometric characterization of the deposited material reveals a refractive index of 2.2-2.4 RIU in the spectral range of 500-1700 nm and a very low extinction coefficient (lower than 10(-6) in the range of 400-1700 nm), which is consistent with high quality titanium oxide. The electrical resistivity of the titanium oxide patterned with this new process is in the range of 10-40 G Omega cm and the measured breakdown field is in the range of 10-70 V mu m(-1). The fabricated nanopatterns are important for a variety of applications, including field-effect transistors, memory devices, MEMS, waveguide structures, bio-and chemical sensors.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Gas-assisted electron-beam-induced nanopatterning of high-quality Si-based insulator
    Riazanova, A. V.
    Costanzi, B. N.
    Aristov, A.
    Rikers, Y. G. M.
    Strom, V.
    Mulders, J. J. L.
    Kabashin, A. V.
    Dahlberg, E. Dan
    Belova, L. M.
    NANOTECHNOLOGY, 2014, 25 (15)
  • [2] High-quality epitaxial iron nitride films grown by gas-assisted molecular-beam epitaxy
    Borsa, DM
    Grachev, S
    Boerma, DO
    Kerssemakers, JWJ
    APPLIED PHYSICS LETTERS, 2001, 79 (07) : 994 - 996
  • [3] Gas-assisted silver deposition with a focused electron beam
    Berger, Luisa
    Madajska, Katarzyna
    Szymanska, Iwona B.
    Hoflich, Katja
    Polyakov, Mikhail N.
    Jurczyk, Jakub
    Guerra-Nunez, Carlos
    Utke, Ivo
    BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 2018, 9 : 224 - 232
  • [4] Electron-beam-induced topographical, chemical, and structural patterning of amorphous titanium oxide films
    Kern, P.
    Mueller, Y.
    Patscheider, J.
    Michler, J.
    JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (47): : 23660 - 23668
  • [5] Gas-assisted focused electron beam and ion beam processing and fabrication
    Utke, Ivo
    Hoffmann, Patrik
    Melngailis, John
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2008, 26 (04): : 1197 - 1276
  • [6] In-situ Monitoring of Gas-Assisted Focused Ion Beam and Focused Electron Beam Induced Processing
    Utke, I.
    Gabureac, M.
    Friedli, V.
    Bernau, L.
    Michler, J.
    ELECTRON MICROSCOPY AND ANALYSIS GROUP CONFERENCE 2009 (EMAG 2009), 2010, 241
  • [7] Inert Gas Enhanced Laser-Assisted Purification of Platinum Electron-Beam-Induced Deposits
    Stanford, Michael G.
    Lewis, Brett B.
    Noh, Joo Hyon
    Fowlkes, Jason D.
    Rack, Philip D.
    ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (35) : 19579 - 19588
  • [8] Interfacial Electron Beam Lithography: Chemical Monolayer Nanopatterning via Electron-Beam-Induced Interfacial Solid-Phase Oxidation
    Maoz, Rivka
    Berson, Jonathan
    Burshtain, Doron
    Nelson, Peter
    Zinger, Ariel
    Bitton, Ora
    Sagiv, Jacob
    ACS NANO, 2018, 12 (10) : 9680 - 9692
  • [9] DETERMINATION OF FIXED ELECTRON-BEAM-INDUCED POSITIVE OXIDE CHARGE
    BERNSTEIN, GH
    POLCHLOPEK, SW
    KAMATH, R
    POROD, W
    SCANNING, 1992, 14 (06) : 345 - 349
  • [10] Electron-Beam-Induced Nanopatterning of J-Aggregate Thin Films for Excitonic and Photonic Response Control
    Seo, In Cheol
    Woo, Byung Hoon
    An, Soo-Chan
    Lee, Eunsongyi
    Jeong, Hoon Yeub
    Lim, Yeonsoo
    Jun, Young Chul
    ADVANCED OPTICAL MATERIALS, 2018, 6 (20):