A hybrid a posteriori error estimator for conforming finite element approximations

被引:15
作者
Cai, Difeng [1 ]
Cai, Zhiqiang [1 ]
机构
[1] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
基金
美国国家科学基金会;
关键词
Finite element method; A posteriori error estimation; Adaptive mesh refinement; Diffusion problem; ELLIPTIC-EQUATIONS; PART I; RECOVERY; GRIDS;
D O I
10.1016/j.cma.2018.04.050
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper introduces a hybrid a posteriori error estimator for the conforming finite element method, which may be regarded as a combination of the explicit residual and the improved ZZ error estimators. With comparable cost, the hybrid estimator is more accurate than the residual estimator. It is shown that the hybrid estimator is reliable on all meshes, unlike estimators of the ZZ type. Moreover, the reliability constant is independent of the jump of the diffusion coefficients for elliptic interface problems under the monotonicity assumption of the coefficients. Finally, numerical examples confirm the robustness of the estimator with respect to coefficient jumps and also better effectivity index compared to the residual estimator. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:320 / 340
页数:21
相关论文
共 27 条
[1]  
Ainsworth M., 2000, PUR AP M-WI
[2]   ERROR ESTIMATES FOR ADAPTIVE FINITE-ELEMENT COMPUTATIONS [J].
BABUSKA, I ;
RHEINBOLDT, WC .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1978, 15 (04) :736-754
[3]   A FEEDBACK FINITE-ELEMENT METHOD WITH A POSTERIORI ERROR ESTIMATION .1. THE FINITE-ELEMENT METHOD AND SOME BASIC PROPERTIES OF THE A POSTERIORI ERROR ESTIMATOR [J].
BABUSKA, I ;
MILLER, A .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1987, 61 (01) :1-40
[4]   Superconvergent derivative recovery for Lagrange triangular elements of degree p on unstructured grids [J].
Bank, Randolph E. ;
Xu, Jinchao ;
Zheng, Bin .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2007, 45 (05) :2032-2046
[5]   Asymptotically exact a posteriori error estimators, part I: Grids with superconvergence [J].
Bank, RE ;
Xu, JC .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2003, 41 (06) :2294-2312
[6]  
Bernardi C, 2000, NUMER MATH, V85, P579, DOI 10.1007/s002110000135
[7]  
Boffi D., 2013, Springer Ser. Comput. Math
[8]   Improved ZZ a posteriori error estimators for diffusion problems: Conforming linear elements [J].
Cai, Zhiqiang ;
He, Cuiyu ;
Zhang, Shun .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2017, 313 :433-449
[9]   FLUX RECOVERY AND A POSTERIORI ERROR ESTIMATORS: CONFORMING ELEMENTS FOR SCALAR ELLIPTIC EQUATIONS [J].
Cai, Zhiqiang ;
Zhang, Shun .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2010, 48 (02) :578-602
[10]   RECOVERY-BASED ERROR ESTIMATOR FOR INTERFACE PROBLEMS: CONFORMING LINEAR ELEMENTS [J].
Cai, Zhiqiang ;
Zhang, Shun .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (03) :2132-2156