Highly efficient perovskite solar cells for light harvesting under indoor illumination via solution processed SnO2/MgO composite electron transport layers

被引:225
作者
Dagar, Janardan [1 ]
Castro-Hermosa, Sergio [1 ]
Lucarelli, Giulia [1 ,2 ,3 ]
Cacialli, Franco [2 ,3 ]
Brown, Thomas M. [1 ]
机构
[1] Univ Roma Tor Vergata, Dept Elect Engn, CHOSE Ctr Hybrid & Organ Solar Energy, Via Politecn 1, I-00133 Rome, Italy
[2] UCL, Dept Phys & Astron, London WC1H 0AH, England
[3] UCL, London Ctr Nanotechnol, London WC1H 0AH, England
基金
英国工程与自然科学研究理事会;
关键词
Electron transport layer; SnO2; layer; SnO2/MgO composite layer; Planar perovskite solar cell; Maximum power density; Indoor light illumination; TRIHALIDE PEROVSKITE; V HYSTERESIS; MGO LAYER; PERFORMANCE; RECOMBINATION; OXIDE; ABSORBER; DYNAMICS; HOLE; ZNO;
D O I
10.1016/j.nanoen.2018.04.027
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We present new architectures in CH3NH3PbI3 based planar perovskite solar cells incorporating solution processed SnO2/MgO composite electron transport layers that show the highest power outputs ever reported for photovoltaic cells under typical 200-400 lx indoor illumination conditions. When measured under white OSRAM LED lamp (200, 400 lx), the maximum power density values were 20.2 mu W/cm(2) (estimated power conversion efficiency, PCE = 25.0%) at 200 lx and 41.6 mu W/cm(2) (PCE = 26.9%) at 400 lx which correspond to a similar to 20% increment compared to solar cells with a SnO2 layer only (even at standard 1 sun illumination, where the maximum PCE was 19.0%). The thin MgO overlayer leads to more uniform films, reduces interfacial carrier recombination, and leads to better stability. All layers of the cells, except for the two electrodes, are solution processed at low temperatures for low cost processing. Furthermore, ambient indoor conditions represent a milder environment compared to stringent outdoor conditions for a technology that is still looking for a commercial outlet also due to stability concerns. The unparalleled performance here demonstrated, paves the way for perovskite solar cells to contribute strongly to the powering of the indoor electronics of the future (e.g. smart autonomous indoor wireless sensor networks, internet of things etc).
引用
收藏
页码:290 / 299
页数:10
相关论文
共 54 条
[1]   Impact of carrier recombination on fill factor for large area heterojunction crystalline silicon solar cell with 25.1% efficiency [J].
Adachi, Daisuke ;
Hernandez, Jose Luis ;
Yamamoto, Kenji .
APPLIED PHYSICS LETTERS, 2015, 107 (23)
[2]   Efficiency and Stability Enhancement in Perovskite Solar Cells by Inserting Lithium-Neutralized Graphene Oxide as Electron Transporting Layer [J].
Agresti, Antonio ;
Pescetelli, Sara ;
Cina, Lucio ;
Konios, Dimitrios ;
Kakavelakis, George ;
Kymakis, Emmanuel ;
Di Carlo, Aldo .
ADVANCED FUNCTIONAL MATERIALS, 2016, 26 (16) :2686-2694
[3]   Highly Reproducible Perovskite Solar Cells with Average Efficiency of 18.3% and Best Efficiency of 19.7% Fabricated via Lewis Base Adduct of Lead(II) Iodide [J].
Ahn, Namyoung ;
Son, Dae-Yong ;
Jang, In-Hyuk ;
Kang, Seong Min ;
Choi, Mansoo ;
Park, Nam-Gyu .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (27) :8696-8699
[4]   Optical properties and limiting photocurrent of thin-film perovskite solar cells [J].
Ball, James M. ;
Stranks, Samuel D. ;
Hoerantner, Maximilian T. ;
Huettner, Sven ;
Zhang, Wei ;
Crossland, Edward J. W. ;
Ramirez, Ivan ;
Riede, Moritz ;
Johnston, Michael B. ;
Friend, Richard H. ;
Snaith, Henry J. .
ENERGY & ENVIRONMENTAL SCIENCE, 2015, 8 (02) :602-609
[5]   Factors controlling charge recombination under dark and light conditions in dye sensitised solar cells [J].
Barnes, Piers R. F. ;
Anderson, Assaf Y. ;
Juozapavicius, Mindaugas ;
Liu, Lingxuan ;
Li, Xiaoe ;
Palomares, Emilio ;
Forneli, Amparo ;
O'Regan, Brian C. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2011, 13 (08) :3547-3558
[6]   Competition between recombination and extraction of free charges determines the fill factor of organic solar cells [J].
Bartesaghi, Davide ;
Perez, Irene del Carmen ;
Kniepert, Juliane ;
Roland, Steffen ;
Turbiez, Mathieu ;
Neher, Dieter ;
Koster, L. Jan Anton .
NATURE COMMUNICATIONS, 2015, 6
[7]   In Situ Generation of Poly (Vinylene Carbonate) Based Solid Electrolyte with Interfacial Stability for LiCoO2 Lithium Batteries [J].
Chai, Jingchao ;
Liu, Zhihong ;
Ma, Jun ;
Wang, Jia ;
Liu, Xiaochen ;
Liu, Haisheng ;
Zhang, Jianjun ;
Cui, Guanglei ;
Chen, Liquan .
ADVANCED SCIENCE, 2017, 4 (02)
[8]   Origin of J-V Hysteresis in Perovskite Solar Cells [J].
Chen, Bo ;
Yang, Mengjin ;
Priya, Shashank ;
Zhu, Kai .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2016, 7 (05) :905-917
[9]   Perovskite Photovoltaics for Dim-Light Applications [J].
Chen, Chien-Yu ;
Chang, Jung-Hao ;
Chiang, Kai-Ming ;
Lin, Hong-Lin ;
Hsiao, Sheng-Yi ;
Lin, Hao-Wu .
ADVANCED FUNCTIONAL MATERIALS, 2015, 25 (45) :7064-7070
[10]   Efficient fully laser-patterned flexible perovskite modules and solar cells based on low-temperature solution-processed SnO2/mesoporous-TiO2 electron transport layers [J].
Dagar, Janardan ;
Castro-Hermosa, Sergio ;
Gasbarri, Matteo ;
Palma, Alessandro L. ;
Cina, Lucio ;
Matteocci, Fabio ;
Calabro, Emanuele ;
Di Carlo, Aldo ;
Brown, Thomas M. .
NANO RESEARCH, 2018, 11 (05) :2669-2681