Outer actions of Out (Fn) on small right-angled Artin groups

被引:3
作者
Kielak, Dawid [1 ]
机构
[1] Univ Bielefeld, Fak Math, Bielefeld, Germany
关键词
AUTOMORPHISM-GROUPS; LINEAR REPRESENTATIONS; HOMOMORPHISMS;
D O I
10.2140/agt.2018.18.1041
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We determine the precise conditions under which SOut(F-n), the unique index-two subgroup of Out(F-n), can act nontrivially via outer automorphisms on a RAAG whose defining graph has fewer than 1/2(n2) vertices. We also show that the outer automorphism group of a RAAG cannot act faithfully via outer automorphisms on a RAAG with a strictly smaller (in number of vertices) defining graph. Along the way we determine the minimal dimensions of nontrivial linear representations of congruence quotients of the integral special linear groups over algebraically closed fields of characteristic zero, and provide a new lower bound on the cardinality of a set on which SOut(F-n) can act nontrivially.
引用
收藏
页码:1041 / 1065
页数:25
相关论文
共 23 条
[1]  
[Anonymous], 2003, GRADUATE STUDIES MAT
[2]   Embedding the Outer Automorphism Group Out(Fn) of a Free Group of Rank n in the Group Out(Fm) for m>n [J].
O. V. Bogopol'skii ;
D. V. Puga .
Algebra and Logic, 2002, 41 (2) :69-73
[3]   Abelian covers of graphs and maps between outer automorphism groups of free groups [J].
Bridson, Martin R. ;
Vogtmann, Karen .
MATHEMATISCHE ANNALEN, 2012, 353 (04) :1069-1102
[4]   Homomorphisms from automorphism groups of free groups [J].
Bridson, MR ;
Vogtmann, K .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2003, 35 :785-792
[5]   Automorphisms of 2-dimensional right-angled Artin groups [J].
Charney, Ruth ;
Crisp, John ;
Vogtmann, Karen .
GEOMETRY & TOPOLOGY, 2007, 11 :2227-2264
[6]   Outer space for untwisted automorphisms of right-angled Artin groups [J].
Charney, Ruth ;
Stambaugh, Nathaniel ;
Vogtmann, Karen .
GEOMETRY & TOPOLOGY, 2017, 21 (02) :1131-1178
[7]  
Culler Cul84 Marc, 1984, Contemp. Math., V33, P197, DOI [10.1090/conm/033/767107, DOI 10.1090/CONM/033/767107]
[8]   A PRESENTATION FOR THE SPECIAL AUTOMORPHISM GROUP OF A FREE GROUP [J].
GERSTEN, SM .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1984, 33 (03) :269-279
[9]   Linear Representations of the Automorphism Group of a Free Group [J].
Grunewald, Fritz ;
Lubotzky, Alexander .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2009, 18 (05) :1564-1608
[10]  
Khramtsov D. G., 1990, TEORETIKO GRUPPOVYE, P95