Error estimates for spectral approximation of elliptic control problems with integral state and control constraints

被引:13
作者
Huang, Fenglin [1 ]
Chen, Yanping [1 ]
机构
[1] S China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R China
基金
美国国家科学基金会;
关键词
Optimal control; Elliptic equations; Integral state and control constraints; Legendre polynomials; Spectral Galerkin method; FINITE-ELEMENT APPROXIMATIONS; POINTWISE CONTROL; LAGRANGE MULTIPLIERS; STOKES EQUATIONS;
D O I
10.1016/j.camwa.2014.07.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The goal of this paper is to investigate the Legendre-Galerkin spectral approximation of elliptic optimal control problems with integral state and control constraints. Thanks to the appropriate base functions of the discrete spaces, the discrete system is with sparse coefficient matrices. We first present the optimality conditions of the control system. Then a priori and a posteriori error estimates both in H-1 and L-2 norms are derived. Some numerical tests indicate that the spectral accuracy can be achieved, and the proposed method is competitive for solving control problems. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:789 / 803
页数:15
相关论文
共 37 条
[21]  
Hintermuller M., 2009, LECT NOTES COMPUTATI, V72
[22]  
Hinze M, 2009, MATH MODEL-THEOR APP, V23, P157, DOI 10.1007/978-1-4020-8839-1_3
[23]   A posteriori error estimation of finite element approximations of pointwise state constrained distributed control problems [J].
Hoppe, R. H. W. ;
Kieweg, M. .
JOURNAL OF NUMERICAL MATHEMATICS, 2009, 17 (03) :219-244
[24]   Semi-smooth Newton methods for state-constrained optimal control problems [J].
Ito, K ;
Kunisch, K .
SYSTEMS & CONTROL LETTERS, 2003, 50 (03) :221-228
[25]  
Liu HP, 2006, INT J NUMER ANAL MOD, V3, P283
[26]  
Liu W.B., 2008, Adaptive Finite Element Methods for Optimal Control Governed by PDEs
[27]   FINITE ELEMENT APPROXIMATIONS OF AN OPTIMAL CONTROL PROBLEM WITH INTEGRAL STATE CONSTRAINT [J].
Liu, Wenbin ;
Yang, Danping ;
Yuan, Lei ;
Ma, Chaoqun .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2010, 48 (03) :1163-1185
[28]  
Neittaanmaki P., 1994, Optimal Control of Nonlinear Parabolic Systems: Theory, Algorithms, and Applications
[29]   Adaptive finite element method for an optimal control problem of Stokes flow with L2-norm state constraint [J].
Niu, Haifeng ;
Yuan, Lei ;
Yang, Danping .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2012, 69 (03) :534-549
[30]   FINITE ELEMENT ANALYSIS OF OPTIMAL CONTROL PROBLEM GOVERNED BY STOKES EQUATIONS WITH L2-NORM STATE-CONSTRAINTS [J].
Niu, Haifeng ;
Yang, Danping .
JOURNAL OF COMPUTATIONAL MATHEMATICS, 2011, 29 (05) :589-604