New developments in the polarizable continuum model for quantum mechanical and classical calculations on molecules in solution

被引:2330
作者
Cossi, M [1 ]
Scalmani, G [1 ]
Rega, N [1 ]
Barone, V [1 ]
机构
[1] Univ Naples Federico II, Dipartimento Chim, I-80126 Naples, Italy
关键词
D O I
10.1063/1.1480445
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The polarizable continuum model (PCM), used for the calculation of molecular energies, structures, and properties in liquid solution has been deeply revised, in order to extend its range of applications and to improve its accuracy. The main changes effect the definition of solute cavities, of solvation charges and of the PCM operator added to the molecular Hamiltonian, as well as the calculation of energy gradients, to be used in geometry optimizations. The procedure can be equally applied to quantum mechanical and to classical calculations; as shown also with a number of numerical tests, this PCM formulation is very efficient and reliable. It can also be applied to very large solutes, since all the bottlenecks have been eliminated to obtain a procedure whose time and memory requirements scale linearly with solute size. The present procedure can be used to compute solvent effects at a number of different levels of theory on almost all the chemical systems which can be studied in vacuo. (C) 2002 American Institute of Physics.
引用
收藏
页码:43 / 54
页数:12
相关论文
共 74 条
[1]   Toward reliable density functional methods without adjustable parameters: The PBE0 model [J].
Adamo, C ;
Barone, V .
JOURNAL OF CHEMICAL PHYSICS, 1999, 110 (13) :6158-6170
[2]  
Adamo C., 2001, THEORETICAL BIOCH PR, P467, DOI [10.1016/S1380-7323(01)80013-3, DOI 10.1016/S1380-7323(01)80013-3]
[3]   Separation of the electric polarization into fast and slow components: A comparison of two partition schemes [J].
Aguilar, MA .
JOURNAL OF PHYSICAL CHEMISTRY A, 2001, 105 (45) :10393-10396
[4]   Recent advances in the description of solvent effects with the polarizable continuum model [J].
Amovilli, C ;
Barone, V ;
Cammi, R ;
Cancès, E ;
Cossi, M ;
Mennucci, B ;
Pomelli, CS ;
Tomasi, J .
ADVANCES IN QUANTUM CHEMISTRY, VOL 32: QUANTUM SYSTEMS IN CHEMISTRY AND PHYSICS, PT II, 1998, 32 :227-261
[5]   COMMON THEORETICAL FRAMEWORK FOR QUANTUM CHEMICAL SOLVENT EFFECT THEORIES [J].
ANGYAN, JG .
JOURNAL OF MATHEMATICAL CHEMISTRY, 1992, 10 (1-4) :93-137
[6]   Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model [J].
Barone, V ;
Cossi, M .
JOURNAL OF PHYSICAL CHEMISTRY A, 1998, 102 (11) :1995-2001
[7]   A new definition of cavities for the computation of solvation free energies by the polarizable continuum model [J].
Barone, V ;
Cossi, M ;
Tomasi, J .
JOURNAL OF CHEMICAL PHYSICS, 1997, 107 (08) :3210-3221
[8]   VAN DER WAALS VOLUMES + RADII [J].
BONDI, A .
JOURNAL OF PHYSICAL CHEMISTRY, 1964, 68 (03) :441-+
[9]   REMARKS ON THE USE OF THE APPARENT SURFACE-CHARGES (ASC) METHODS IN SOLVATION PROBLEMS - ITERATIVE VERSUS MATRIX-INVERSION PROCEDURES AND THE RENORMALIZATION OF THE APPARENT CHARGES [J].
CAMMI, R ;
TOMASI, J .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1995, 16 (12) :1449-1458
[10]   Linear response theory for the polarizable continuum model [J].
Cammi, R ;
Mennucci, B .
JOURNAL OF CHEMICAL PHYSICS, 1999, 110 (20) :9877-9886