On a Nonlocal Fractional p(.,.)-Laplacian Problem with Competing Nonlinearities

被引:37
作者
Ali, K. B. [1 ,2 ]
Hsini, M. [1 ,2 ]
Kefi, K. [2 ,3 ]
Chung, N. T. [4 ]
机构
[1] Jazan Tech Coll, POB 241, Jazan 45952, Saudi Arabia
[2] Fac Sci Tunis, Dept Math, Tunis, Tunisia
[3] Northern Border Univ, Community Coll Rafha, Rafha, Saudi Arabia
[4] Quang Binh Univ, Dept Math, 312 Ly Thuong Kiet, Dong Hoi, Quang Binh, Vietnam
关键词
p(; )-Fractional Laplacian; Kirchhoff type problems; Variable exponents; Variational methods; SPACES;
D O I
10.1007/s11785-018-00885-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to study the existence of nontrivial weak solutions for the problem {M(integral Omega x Omega vertical bar u(x)-u(y)vertical bar(p(x,y))/p(x,y)vertical bar x-y vertical bar(N)+p(x,y)s dxdy) (Delta)(p(x,.))(s) u(x) = lambda f (x, u) - vertical bar u(x)vertical bar(q(x)-2)u(x) in Omega, u = 0 in partial derivative Omega, where Omega subset of R-N, N >= 2 is a bounded smooth domain, M and f are two continuous functions and (Delta)(p(.,.))(s) is the fractional p(.,.)-Laplacian while lambda is a positive parameter and 0 < s < 1. Using variational techniques combined with the theory of the generalized Lebesgue Sobolev spaces, we prove some existence and multiplicity results for the problem in an appropriate space of functions.
引用
收藏
页码:1377 / 1399
页数:23
相关论文
共 50 条
[41]   Fractional p-Laplacian elliptic problems with sign changing nonlinearities via the nonlinear Rayleigh quotient [J].
Silva, Edcarlos D. ;
Oliveira, J. L. A. ;
Goulart, C. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 526 (02)
[42]   On a class of fractional p(<middle dot>, <middle dot>)-Laplacian problems with sub-supercritical nonlinearities [J].
Azghay, Abdelilah ;
Massar, B. mohammed .
CUBO-A MATHEMATICAL JOURNAL, 2023, 25 (03) :387-410
[43]   Three solutions for a nonlocal Dirichlet boundary value problem involving the p(x)-Laplacian [J].
Dai, Guowei .
APPLICABLE ANALYSIS, 2013, 92 (01) :191-210
[44]   A Fractional Laplacian and Its Extension Problem [J].
Ben Said, Salem ;
Negzaoui, Selma .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025, 48 (09) :9840-9852
[45]   Semilinear Dirichlet problem for the fractional Laplacian [J].
Bogdan, Krzysztof ;
Jarohs, Sven ;
Kania, Edyta .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 193
[46]   WAVE EXTENSION PROBLEM FOR THE FRACTIONAL LAPLACIAN [J].
Kemppainen, Mikko ;
Sjogren, Peter ;
Luis Torrea, Jose .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2015, 35 (10) :4905-4929
[47]   An extension problem related to the fractional Laplacian [J].
Caffarelli, Luis ;
Silvestre, Luis .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2007, 32 (7-9) :1245-1260
[48]   A semilnear singular problem for the fractional laplacian [J].
Godoy, Tomas .
AIMS MATHEMATICS, 2018, 3 (04) :464-484
[49]   A fractional Laplacian problem with critical nonlinearity [J].
Long, Xiuhong ;
Wang, Jixiu .
AIMS MATHEMATICS, 2021, 6 (08) :8415-8425
[50]   A novel and simple spectral method for nonlocal PDEs with the fractional Laplacian [J].
Zhou, Shiping ;
Zhang, Yanzhi .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2024, 168 :133-147