On a Nonlocal Fractional p(.,.)-Laplacian Problem with Competing Nonlinearities

被引:37
作者
Ali, K. B. [1 ,2 ]
Hsini, M. [1 ,2 ]
Kefi, K. [2 ,3 ]
Chung, N. T. [4 ]
机构
[1] Jazan Tech Coll, POB 241, Jazan 45952, Saudi Arabia
[2] Fac Sci Tunis, Dept Math, Tunis, Tunisia
[3] Northern Border Univ, Community Coll Rafha, Rafha, Saudi Arabia
[4] Quang Binh Univ, Dept Math, 312 Ly Thuong Kiet, Dong Hoi, Quang Binh, Vietnam
关键词
p(; )-Fractional Laplacian; Kirchhoff type problems; Variable exponents; Variational methods; SPACES;
D O I
10.1007/s11785-018-00885-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to study the existence of nontrivial weak solutions for the problem {M(integral Omega x Omega vertical bar u(x)-u(y)vertical bar(p(x,y))/p(x,y)vertical bar x-y vertical bar(N)+p(x,y)s dxdy) (Delta)(p(x,.))(s) u(x) = lambda f (x, u) - vertical bar u(x)vertical bar(q(x)-2)u(x) in Omega, u = 0 in partial derivative Omega, where Omega subset of R-N, N >= 2 is a bounded smooth domain, M and f are two continuous functions and (Delta)(p(.,.))(s) is the fractional p(.,.)-Laplacian while lambda is a positive parameter and 0 < s < 1. Using variational techniques combined with the theory of the generalized Lebesgue Sobolev spaces, we prove some existence and multiplicity results for the problem in an appropriate space of functions.
引用
收藏
页码:1377 / 1399
页数:23
相关论文
共 50 条
[21]   On nonlocal Henan type problems with the fractional Laplacian [J].
Ma, Li .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2021, 203
[22]   A remark on nonlocal Neumann conditions for the fractional Laplacian [J].
Abatangelo, Nicola .
ARCHIV DER MATHEMATIK, 2020, 114 (06) :699-708
[23]   A remark on nonlocal Neumann conditions for the fractional Laplacian [J].
Nicola Abatangelo .
Archiv der Mathematik, 2020, 114 :699-708
[24]   ON NONLOCAL FRACTIONAL LAPLACIAN PROBLEMS WITH OSCILLATING POTENTIALS [J].
Ambrosio, Vincenzo ;
D'Onofrio, Luigi ;
Bisci, Giovanni Molica .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2018, 48 (05) :1399-1436
[25]   Solvability of a nonlocal fractional p-Kirchhoff type problem [J].
Bouabdallah, Mohamed ;
Chakrone, Omar ;
Chehabi, Mohammed ;
Zuo, Jiabin .
RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2023, 72 (08) :3971-3985
[26]   Solvability of a nonlocal fractional p-Kirchhoff type problem [J].
Mohamed Bouabdallah ;
Omar Chakrone ;
Mohammed Chehabi ;
Jiabin Zuo .
Rendiconti del Circolo Matematico di Palermo Series 2, 2023, 72 :3971-3985
[27]   Existence of Solutions to Fractional p-Laplacian Systems with Homogeneous Nonlinearities of Critical Sobolev Growth [J].
Lu, Guozhen ;
Shen, Yansheng .
ADVANCED NONLINEAR STUDIES, 2020, 20 (03) :579-597
[28]   EXISTENCE RESULTS FOR NONLINEAR SCHRODINGER EQUATIONS INVOLVING THE FRACTIONAL (p, q)-LAPLACIAN AND CRITICAL NONLINEARITIES [J].
Lv, Huilin ;
Zheng, Shenzhou ;
Feng, Zhaosheng .
ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 2021 (100)
[29]   Periodic solutions for nonlocal p(t)-Laplacian systems [J].
Zhang, Shengui .
BOUNDARY VALUE PROBLEMS, 2019,
[30]   Multiple positive solutions for a fractional p&q-Laplacian system with concave and critical nonlinearities [J].
Echarghaoui, Rachid ;
Khouakhi, Moussa ;
Masmodi, Mohamed .
JOURNAL OF ELLIPTIC AND PARABOLIC EQUATIONS, 2023, 9 (02) :781-805